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I. Introduction and Historical Perspective

Using a compound microscope and the blood of several
animals (including the elephant!), the English anato-
mist, T. W. Jones, discovered, in 1846, that some white
blood cells contained granules that became visible when
immersed in hypotonic solutions (Jones, 1846). Although
it has been claimed that Jones had discovered the eosin-
ophil (Archer, 1963), it is more likely that he visualized
the more abundant neutrophil (Spry, 1988). It was
Brown (1898) who probably first detected eosinophils in
the blood and bone marrow of patients with eosinophilic
leukemia in the latter decades of the 19th century, al-

though the lack of appropriate dyes and staining tech-
niques at that time prevented formal identification. Full
credit for the discovery of the “eosinophile” is thus given
to Paul Ehrlich (1879) who first noticed that a certain
population of white blood cells was stained with a neg-
atively charged, brominated fluorescein compound, eo-
sin, and was so named for that property.

Despite the discovery of eosinophils almost 120 years
ago, still relatively little is known of their biochemistry
and pharmacology when compared to their highly stud-
ied sister cell, the neutrophil. This is perhaps surprising
given the critical role of these cells both in host defense
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(Butterworth and Townley, 1993; Allen and Davis, 1994)
and, under certain circumstances, in a variety of dis-
eases, including many, if not all, of those indicated in
Table 1. However, a persuasive argument (and one that,
through experience, is vigorously championed by the
authors of this review!) for the lack of investigation
almost certainly reflects the difficulty in obtaining eo-
sinophils in sufficient numbers and of a purity required
for detailed studies to be performed and from which
unambiguous conclusions can be drawn. Moreover, the
process of purification and the effect of previous drug
therapy on the ex vivo behavior of human eosinophils
invariably leads to alterations in cell function and can
make interpretation of results difficult. With the refine-
ment of separation and purification techniques, in partic-
ular the use of “negative selection” to remove unwanted leu-
kocytes (Hansel et al., 1989, 1990, 1991b), has come a marked
increase in the number of articles published relating to eosin-
ophil biology. Indeed, according to PubMed records, more
than 3500 articles have been published since 1990 with a
noticeable increase in pharmacological and biochemical con-
tent. It thus seems timely to attempt a comprehensive trea-
tise of the pharmacology of the eosinophil, and the authors
make no apology for omitting much of the immunology and
parasitology which has been elegantly reviewed elsewhere
(Capron, 1991, 1992; Weller, 1991; McEwen, 1992; Butter-
field and Leiferman, 1993; Butterworth and Thorne, 1993;
Wardlaw et al., 1995).

II. Gross Morphology and Ultrastructure

Eosinophils are actively motile, terminally differenti-
ated leukocytes derived from the bone marrow, and have
been identified in many mammalian and nonmamma-
lian species (Table 2). Human eosinophils are approxi-
mately 8 mm in diameter, have a volume of 275 fl and, in
addition to their avidity for eosin, exhibit several dis-
tinct characteristics that distinguish them from other
granulocytes (Sokol et al., 1988; Dvorak, 1991). Gener-
ally, normal healthy eosinophils have a bi-lobed nucleus
that is filled with partially condensed chromatin (Figs. 1
and 2). In some diseases, however, the number of lobes is
increased to more than four (Sokol et al., 1987). A prom-
inent feature of the eosinophil is the presence of many
spherical or ovoid granules (Figs. 1 and 2) that occupy
approximately one-fifth of the cytoplasm. Four distinct
populations of granule (secondary granules, small gran-
ules, primary granules, lipid bodies) have been recog-
nized that house a plethora of proteins, many with en-
zymatic activity (Fig. 2; Table 3). The first morphological
marker of the eosinophil is the appearance of granules
that are visible at the promyelocyte stage (Zucker
Franklin, 1980). Several proteins are found within these
structures, including eosinophil peroxidase (EPO),2 acid
phosphatase, and arylsulphatase B. Despite earlier de-
scriptions to the contrary (Bainton and Farquhar, 1970),
these granules are probably precursors of the specific, or

2 Abbreviations: A1, murine-related Bcl protein; AA, arachidonic acid; ACh, acetylcholine; AH 13205, trans-2-(4-[1hydroxyhexyl]phenyl)-5-
oxocyclopentaneheptanoate; AMT, 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine; APC, antigen presenting cell; AP-1, activator protein-1; BAL, bron-
choalveolar lavage; Bcl-2, B-cell leukemia oncogene-2; Bcl-xL, Bcl-2-regulated factor x(L); Mcl-1, Bcl-2 homology protein; Bax, Bcl-2-binding protein;
BLT, leukotriene B4 receptor; BN 52021, 3-[1,1-dimethylethyl]hexahydro-1,4,7b-trihydroxy-8-methyl-9H-1,7a(epoxy methanol)-1H,6aH-cyclopenta-
[c]furo[2,3-b]furo [39,29:3,4] cyclopenta[1,2-d] furan-5,9,12[4H]-trione; BN 50730, [tetrahydro-4,7,8,10-methyl-1(chloro-2 phenyl)-6-(methoxy-4 phenyl-
carbamoyl)-9-pyrido [49,39-4,5]thieno[3,2-f]triazolo-1,2,4[4,3-a]diazepine-1,4]; BQ-123, cyclo(-D-Trp-D-Asp-Pro-D-Val-Leu); bp, base pair; BQ 788, N-cis-
2,6-dimethylpiperidinocarbonyl-L-g-methylleucyl-D-1-methoxycarbonyl tryptophanyl-D-norleucine; BRL 35135, (R*,R*)-(6)-methyl-4-[2-[2-hydroxy-
2-(3-chlorophenyl) ethyl amino]propyl]-phenoxyacetate hydrobromide; BRL 37344, sodium 4-{2-[2-hydroxy-2-(3-chlorophenyl)-
ethylamino]propyl}phenoxyacetate sesquihydrate (RR.SS diastereoisomer); BW 245C, 5-(6-carboxyhexyl)-1-(cyclohexyl-3-hydroxypropylamino) hydan-
toin; C3a/C4a/C5a, complement 3a/4a/5a anaphylatoxin; [Ca21]i, intracellular-free Ca21 concentration; CAT, chloromphenical acetyl transferase; CBP,
CREB-binding protein; CDP840, R-(1)-4-[2-(3-cyclopentoxy-4-methoxyphenyl)-2-phenylethyl]pyridine; C/EBP, CCAAT-enhancer binding protein;
CGRP, calcitonin gene-related peptide; CHO, Chinese hamster ovary; CI-IB-MECA, 2-chloro-N6-(3-iodobenzyl)adenosine-59-methyl uronamide; CP
105,696, (1)-1-(3S,4R)-[3-(4-phenylbenzyl)-4-hydroxychroman-7-yl] cyclopentane carboxylic acid; CP 80,633, (29S)5-[3-(29-exobicyclo[2.2.1]-heptyloxy)4-
methoxyphenyl] tetrahydro-2(1H)-primidone; CR, complement receptor; CREB, cyclic AMP response element binding protein; CTX, cholera toxin; CV
6209, 2-[N-acetyl-N-(2-methoxy-3-octadecylcarbamoyloxypropoxy carbonyl)aminomethyl]-1-ethyl pyridinium chloride; D-22888, 1-ethyl-8-methoxy-3-
methyl-5-propyl imidazol[1,5a]-pyrdio[3,2-e] pyrazinone; DAG, diacylglycerol; DIDS, 4,49-diisothiocyanato-stilbene-2,29-disulphonic acid; diHEPE, dihy-
droxyeicosapentaenoic acid; diHETE, dihydroxyeicosatetraenoic acid; D-NAME, N-nitro-D-arginine methyl ester; DSE, diad symmetry element; E-6123,
S-(1)-6-(2-chlorophenyl)-3-cyclopropanecarbonyl-8,11-dimethyl-2,3,4,5-tetrahydro-8H-pyrido[49,39:4,5] thieno [3,2-f]-1-[1,2,4]triazolo]4,3-a][1,4]diazepine;
ECF-A, eosinophil chemotactic factor of anaphylaxis; eBP, epsilon binding protein; ECP, eosinophil cationic protein; EDN, eosinophil-derived neurotoxin;
EGF, epidermal growth factor; EPO, eosinophil peroxidase; EPX, eosinophil protein X; ERK, extracellular-regulated kinase; ETE, eicosatetraenoic acid;
FK888, (N2-[(4R)-4-hydroxy-1-(1-methyl-1H-indol-3-yl)carbonyl-L-prolyl]-N-phenylmethyl-3-(2-naphthyl)-L-alaninamide); FLAP, 5-lipoxygenase activat-
ing protein; fMLP, N-formyl-methionyl-leucyl-phenylalanine; Gsa, a subunit of the stimulatory guanine nucleotide-binding protein; GATA, guanine-
adenine-thymine-adenine; GCP, granulocyte chemotactic protein; GF 109203X, 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-
maleimide; GlyCAM-1, glycosylation-dependent, cell adhesion molecule; G-CSF; granulocyte colony-stimulating factor; GM-CSF, granulocyte/
macrophage colony-stimulating factor; GPI, glycosyl phosphatidylinositol; GR, glucocorticoid receptor; GRE, glucocorticoid response element; GRK, G
protein receptor-coupled kinase; GTPgS, guanosine 59-(3-thio)triphosphate; HB-EGF, heparin-binding, epidermal growth factor-like growth factor;
HEPE, hydroxyeicosapentanoic acid; HETE, hydroxyeicosatetraenoic acid; HLA, human leukocyte antigen; HODE, hydroxy-linoleic acid; HPETE,
hydroperoxyeicosa tetraenoic acid; HUVECs, human umbilical vein endothelial cells; IBMX, 3-isobutyl-1-methyl-xanthine; ICAM, intercellular adhesion
molecule; ICI 118,551, (6)-1-(2,3-[dihydro-7-methyl-1H-inden-4-yl]oxy)-3-([1-methylethyl]-amino-2-butanol; IFN, interferon; IL, interleukin; IL-1RA,
interleukin-1 receptor antagonist; Ins(1,4,5)P3, inositol(1,4,5)trisphosphate; JAK, Janus kinase; JNK, c-jun N-terminal kinase, L-659,989, (6)-trans-2-
(39-methoxy-59-methylsulphonyl-49-propoxy phenyl)5-(30,40,50-trimethoxyphenyl)tetrahydrofuran; LFA, leukocyte function-associated antigen; LIF, leu-
kemia inhibitory factor; LPS, lipopolysaccharide; L-NAME, Nv-nitro-L-arginine methyl ester; L-NIL, L-N6-(1-iminoethyl) lysine; L-NMMA, NG-mono-
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secondary, granules that are first seen at the myelocyte
stage of maturation (Hardin and Spicer, 1970; Gleich
and Loegering, 1984). In eosinophils harvested from hu-
mans (Zucker Franklin, 1980; Tavassoli, 1981; Cohen
and Ottesen, 1983) and from many other species, includ-
ing the dog, mouse, rat, goat, guinea pig and rhesus
monkey (Jain, 1986), the specific granules feature a
prominent crystalloid core containing major basic pro-
tein (MBP). Specific granules, containing multiple cores,
also have been visualized (Newman et al., 1996) but
their occurance is relatively rare (Fig. 3). In addition,
other highly charged cationic proteins typified by eosin-
ophil cationic protein (ECP), eosinophil-derived neuro-
toxin (EDN), and EPO (Egesten et al., 1986) are located
within the noncrystalloid matrix along with a number of
cytokines (Fig. 2; Table 3). Differences in the gross mor-
phology of the secondary granules are apparent between
species. Thus, in cats, the core is lamellar rather than
crystalloid, whereas in cattle, horses, mink, and gorillas
the granules lack a central core and appear to be homo-
geneous when visualized under the electron microscope
(Henderson et al., 1983; Jain, 1986; McEwen, 1992).

A population of small granules also has been identi-
fied in human tissue eosinophils that are not seen within
circulating cells or those in the bone marrow (Parmley
and Spicer, 1974). These structures stain intensely for

arylsulphatase B and acid phosphatase (Parmley and
Spicer, 1974; Dvorak, 1991) and may also contain cata-
lase (Iozzo et al., 1982).

The third type of storage organelle that has secretory
properties is the primary granule, which accounts for
approximately 5% of all eosinophil granules (Fig. 2).
Morphologically, they are roughly spherical, of variable
size, and contain no discernible core. In resting eosino-
phils, primary granules provide the sole location for
Charcot-Leyden crystals (Dvorak et al., 1988), which are
colorless, and have a characteristic hexagonal, bipyra-
midal structure with intrinsic lysophospholipase activ-
ity (Ackerman et al., 1980; Weller et al., 1980). In acti-
vated cells, trace amounts of Charcot-Leyden crystals
have been identified within the nucleus and cytoplasm,
implying that this protein can be released intracellu-
larly.

The final population of granules is known as lipid
bodies and these structures are not membrane-bound
(Fig. 2). Approximately five lipid bodies are found per
resting eosinophil, although the number can increase
when the cell is activated. Lipid bodies are spherical
(0.5–2 mm in diameter), electron-dense organelles, and,
as the name implies, provide a principle store for ara-
chidonic acid (AA) that is esterified into glycerophospho-
lipids (Weller and Dvorak, 1985; Weller et al., 1991a).

methyl-L-arginine; LPR, late phase response; LT, leukotriene; LY 293111, 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]
phenoxy]benzoic acid; LY 83583, 6-anilino-5,8-quinoline quinone; Mac-1, macrophage-1 antigen; MAP kinase, mitogen-activated protein kinase;
MBP, major basic protein; MCP, monocyte chemotactic protein; MEK, MAP kinase kinase; MHC, major histocompatibility complex; MIF,
macrophage migration inhibitory factor; MIP, macrophage inflammatory protein; MK-571, (3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl)((3-
dimethylamino-3-oxopropyl)thio)methyl)thio) propanoic acid; MPO, myeloperoxidase; NERDS, nodules, eosinophilia, rheumatism, dermatitis, and
swelling; NF-AT, nuclear factor of activated T-cells; NFkB, nuclear factor kB; NGF, nerve growth factor; NK, neurokinin; NPPB, 5-nitro-2-(3-
phenyl propylamino)-benzoic acid; NOS, nitric oxide synthase; NPC 567, D-Arg-[Hyp3,D-Phe-7]-bradykinin; NPC 16731, D-Arg-[Hyp-3,Thi5d-
Tic7,Tic8]-bradykinin; ODQ, 1H-[1,2,4]- oxidiazolo[4,3-a] quinoxalin-1-one; Org 20241, N-hydroxy-4-(3,4-dimethoxyphenyl)-thiazole-2-carboximi-
damide, PAF, platelet-activating factor; PCA 4248, 2-(phenylthio)ethyl-5-methoxycarbonyl-2,4,6-trimethyl-1,4-dihydropyridine-3-carboxylate; PD
098059, 29-amino-39-methoxyflavone; PDE, phosphodiesterase; PDGF, platelet-derived growth factor; PG, prostaglandin; PKB, protein kinase B;
PKC, protein kinase C; PLA2, phospholipase A2, PLC, phospholipase C; PLD, phospholipase D; PMA, phorbol 12-myristate 13-acetate; PSGL-1,
P-selectin glycoprotein ligand-1; PDGF, platelet-derived growth factor; PtdIns-3 kinase, phosphatidylinositol 3-kinase; PTX, pertussis toxin;
RANTES, regulated on activation, normal T-expressed and secreted; Ro 20–1724, 4-[(butoxy-4-methoxy phenyl)methyl]-2-imidazolidine; Ro
31–8220, 3-[1-[3-amidinothio)propyl-1H-indol-3-yl]-3-(1-methyl-1H-indol-3-yl)maleimide] methane sulphonate; RP-HPLC, reverse phase high-
performance liquid chromatography; RP 73401, 3-cyclopentyloxy-N-(3,5-dichloro-4-pyridyl-3-methoxy benzamide; Rp-8-Br-cAMPS, Rp-8-bromo
adenosine-39,59-cyclic monophosphorothioate; RP 59227, N-(3-benzoylphenyl)-3-(pyridyl)-1H,3H-pyrrolo[1,2-c] thiazole carboxamide; RT, reverse
transcription; RV16, rhinovirus 16; SB 202190, 4-(4-fluorophenyl)-2-(4-hydroxphenyl)-5-(4-pyridyl)1H-imidazole; SB 203580, 4-(4-fluorophenyl)-
2-(4-methylsulphinylphenyl)-5-(4-pyridyl)1H imidazole; SC, secretory component; SB 209670, (1RS-2SR,3RS)-3-(2-carboxymethoxy-4-methoxy-
phenyl)-5-(prop-1-yloxy) indane-2-carboxylic acid; SB 207499, c-4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)-r-l-cyclohexane carboxylic acid;
SCF, stem cell factor; SDZ 64–412, 2,3-dihydro-5-[4-[2-(3,4,5-trimethoxyphenyl)ethyl] phenyl]imidazol[2,1-a] isoquinoline HCl; SHPTP-2, src
homology-2, protein tyrosine phosphatase; SK&F 104353, 2S-hydroxy-3R-(2-carboxyethylthio)-3-(2-[8-phenyloctyl]phenyl)-propanoate; SK&F
88046, N,N9-bis [7-(3-chlorobenzene aminosulphonyl)-1,2,3,4-tetrahydroisoquinolyl] disulphonylimide; SH2, Src homology 2; SH3, Src homology-3;
SM-10661, (6)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one HCl; SNAP, S-nitroso-N-acetyl penicillamine; SNP, sodium nitroprusside; SOZ,
serum-opsonized zymosan; SP, Substance P; SR 27417A, N-(2-dimethyl aminoethyl)-N-(3-pyridinylmethyl)(4-[2,4,6-triisopropylphenyl] thioazol-
2-yl) amine; STAT, signal transducers and activators of transcription; TGF, transforming growth factor; TNF, tumour necrosis factor; TPA,
12-O-tetradecanoylphorbol-13-acetate; TRE, TPA responsive element; TRIM, 1-(2-trifluoromethylphenyl) imidazole; TX, thromboxane; U-75412E,
21-[4-(3-ethylamino-2-pyridinyl)-1-piperazinyl]-16a-methylpregna-1,4,9]-(11)-triene-3,20-dione; U-78517F, (2-[4-[2,6-di-(1-pyrrolidinyl)-4-pyridi-
nyl)-1-piperazinyl]methyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol dihydrochloride), UK 74,505, 4-(2-chlorophenyl)-6-methyl-2-[4-
(2-methylimidazol[4,5-c]pyrid-1-yl)phenyl-5-(2-pyridyl carbamoyl)-1,4-dihydro pyridine-3-carboxylic acid methyl ester; VEGF, vascular endothelial
growth factor; VCAM, vascular cell adhesion molecule; VIP, vasoactive intestinal peptide; VLA, very late antigen; WEB 2086 (apafant),
3-[4-(2-chlorophenyl)-9-methyl-6H-thieno[3,2-f][1,2,4]-thriazolo-[4,3a][1,4]-(diazepin-2-yl)-1-(4-morpholinyl)-1-propanone; WEB 2170 (bepafant),
6-(2-chlorophenyl)-8,9-dihydro-1-methyl-8-(4-morpholinylcarbonyl)-4H,7H-cyclopenta[4,5]thieno[3,2-f][1,2,4]triazolo [4,3-a]diazepine; Y-24180,
(6)-4-(2-chlorophenyl)-2-[2-(4-isobutylphenyl)ethyl]-6,9-dimethyl-6H-thieno3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine; YM 264, 1-(3-methyl-3-phe-
nylbutyl)-4-[2-(3-pyridyl) thiazolidine-4-carbonyl]-piperazine fumarate.
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Further description of the morphology of eosinophils
in health and disease is beyond the scope of this review,
but interested readers should consult articles by Dvorak
(1991) and Sokol et al. (1987) which provide a compre-
hensive treatise of the subject.

III. Life Cycle, Maturation, and Tissue
Distribution

Eosinophil turnover, or eosinopoeisis, occurs almost
exclusively in the bone marrow although ancillary sites
of production can include the spleen, thymus, and lymph
nodes (Till and McCulloch, 1961; Jain, 1986; McEwen,
1992). The bone marrow from normal individuals con-
tains about 3% eosinophils, of which 37% are mature,
nondividing granulocytes, and the remainder are pro-
myelocytes/myelocytes (37%) and metamyelocytes (26%)
that exist in “storage” compartments (Spry, 1988, 1993).

At any one time, it has been estimated that about 16% of
myelocytes are undergoing DNA synthesis (i.e., are in
the S phase of the cell cycle), which lasts about 13 h, and
that the time taken from the last mitosis until they

FIG. 1. Electron micrograph of untreated eosinophils purified from
the peritoneal cavity of guinea pigs. A bi-lobed nucleus containing con-
densed chromatin is shown (large arrow) along with cytoplasm packed
with many large, membrane-enclosed, dense crystalloid-containing ovoid
granules (smaller arrows). Cells were conventionally fixed (glutaralde-
hyde/osmium tetroxide). Bar, 1 mm. Original magnification, 18,0003. See
II for further details

TABLE 2
Some nonhuman species in which eosinophils have been identified

Species

Mammals Amphibia, Birds,
and Fish Reptiles

Buffalo Bass American Alligator
Camela

Cat (domestic, lion, tiger) Carp Lizard
Chinese hamster Chicken Turtle
Cow Duck
Dog Frog
Guinea pig
Horse Loach
Mongolian gerbil Nurse shark
Mouse Pigeon
Opossum Tench
Primates Torpedo
Rabbit
Rat
Wild fallow deer
Yak

Data compiled from Spry (1988) and references therein.
a Johnson et al. (1999).

TABLE 1
Diseases in which eosinophils are believed to play a pathogenic role

Disease

Allergic disorders
Extrinsic bronchial asthma
Allergic rhinitis
Onchocercal dermatitis
Atopic dermatitis
Drug reactions
Nodules, eosinophilia, rheumatism, dermatitis, and swelling

(NERDS)
Vasculitic granulomatous diseases

Temporal vasculitis
Churg-Strauss syndrome
Polyarteritis
Wegener’s granulomatosis
Eosinophilic granulomatous prostatitis (?)

Immunological disorders
Autoimmune reactions (e.g. multiple sclerosis)
Graft rejection
Intrinsic bronchial asthma

Interstitial and other pulmonary diseases
Eosinophilic pleural effusions
Transient pulmonary eosinophilic infiltrates (Löffler)
Histiocytosis
Chronic eosinophilic pneumonia
Hypersensitivity pneumonitis
Allergic bronchopulmonary aspergillosis
Sarcoidosis
Idiopathic pulmonary fibrosis
Topical eosinophilia

Infectious parasitic diseases
Toxocariasis
Filariasis
Schistosomiasis
Trichinosis
Strongyloides
Ascariasis
Echinococcosis/cysticercosis

Other infectious diseases
Acute coccidioidomycosis
Cat scratch disease
Afebrile tuberculosis
Chlamydial pneumonia at infancy

Neoplastic and myeloproliferative diseases
Bronchogenic carcinoma
Hypereosinophilic syndrome
T cell lymphomas and Hodgkin’s disease

Modified from Kroegel et al. (1994b). Further details on eosinophil-related dis-
eases can be found in the following articles: Zucker Franklin (1974, 1978); Tavassoli
(1981); Davis et al. (1984); Kay (1985); Nutman et al. (1989a, b); Liu et al. (1992);
Butterfield and Leiferman (1993); Butterfield et al. (1993); Hall and Walport (1993);
Allen and Davis (1994); Rothenberg (1998).
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appear in the blood as mature cells (the emergence time)
is approximately 2.5 days (Spry, 1988). The migration of
eosinophils from the bone marrow to the blood takes
about 3.5 days (Parwaresch et al., 1976). Using [3H]thy-
midine flash-labeled peripheral blood eosinophils, Walle
and Parwaresch (1979) performed studies in three he-
matologically normal men to estimate the eosinophil
reserve capacity in the postmitotic granulocyte compart-
ment in the bone marrow and the effective eosinopoeisis.
The results of those experiments demonstrated that
mean turnover of eosinophils is approximately 2.2 3 108

cells/kg/day and that the bone marrow provides the larg-
est postmitotic eosinophil reserve capacity (9–14 3 108

cells/kg).
There is compelling evidence that eosinophils are de-

rived from small populations of self-regenerating, hema-
topoietic stem cells that also are capable of differentia-
tion into the individual lymphomyeloid lineages. The
ultimate commitment of stem cells to unipotential pro-
genitors, and their subsequent survival and expansion
into mature eosinophils, has been studied extensively,
although a complete understanding of the factors and
processes by which this occurs still is lacking. It has
been suggested that the fate of a hematopoietic stem cell
to regenerate or to commit to a multipotential progenitor
is purely stochastic (Till et al., 1964; Nakahata et al.,
1982; Nakahata and Ogawa, 1982). In the latter sce-
nario, a host of cytokines and other factors are required
including interleukin (IL)-6, IL-11, IL-12, granulocyte
colony-stimulating factor (G-CSF), stem cell factor (SCF;
CD117; formerly known as c-kit ligand and Steel factor),
and leukemia inhibitory factor (LIF) (Ploemacher et al.,

1993; Ogawa, 1994). Further development of multipo-
tential cells into eosinophil progenitors is under the
influence of SCF, IL-3, IL-4, granulocyte/macrophage
(GM)-CSF, and eotaxin (Kobayashi, 1993, Peled et al.,
1998). Interleukin-5 and possibly eotaxin then provide
the major driving force for the terminal stages of matu-
ration and release into the blood stream (Clutterbuck et
al., 1989; Sanderson, 1993; Palframan et al., 1998a).

In the guinea pig, IL-5 releases eosinophils from the
bone marrow by a mechanism that is blocked by the
phosphatidylinositol 3-kinase (PtdIns 3-kinase) inhibi-
tors wortmannin and LY 294002, although the down-
stream substrates involved in this process are currently
undefined (Palframan et al., 1998b). Moreover, the em-
igration of eosinophils from the marrow precipitated by
IL-5 is associated with adhesive interactions involving
a4 and b2 integrins that act in an opposing manner. In
vivo the expression of b2 integrins is reduced in response
to IL-5, whereas the a4 integrin level remains un-
changed. The observation that a b2 integrin-blocking
antibody suppresses IL-5-driven eosinophil mobilization
suggests that these adhesion molecules are necessary
for effective migration. In contrast, an a4 integrin-block-
ing antibody enhances the release of eosinophils from
the marrow in response to IL-5, and it has been specu-
lated that this prevents their normal attachment to the
bone marrow sinus endothelium (Palframan et al.,
1998b). Thus, the egress of mature eosinophils from the
marrow involves a number of discrete steps.

Once in the circulation, eosinophils have a half-life of
approximately 18 h and a mean blood transit time (26 h)
similar to neutrophils (Steinbach et al., 1979). However,

FIG. 2. Cardinal structures of a human eosinophil. Shown are the typical bi-lobed nucleus (BLN) and the four main granules. The primary (1°)
granule is the principle site of Charcot-Leyden crystals, whereas MBP, ECP, EDN, and EPO reside within the classically crystalloid secondary (2°)
granule along with a number of cytokines and a host of other proteins many with enzymatic activity. Lipid bodies (LB), which represent a site of lipid
mediator biosynthesis, also are found in resting and activated eosinophil where their number is increased along with small granules (SG) that store
proteins such as arylsulfase B and acid phosphatase. See II for further details. COX, cyclooxygenase; 5-LO, 5-lipoxygenase; LPLase, lysophospholipase.
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the half-life of eosinophils is prolonged when an eosino-
philia is precipitated which might be due to an increase
in the concentration of certain circulating cytokines that
enhance survival (see XII. H) and/or to the saturation of
sites through which eosinophils migrate into tissue.

In humans and many domestic animals, eosinophils
comprise 2 to 10% of the peripheral leukocytes, but in
cows the average titer is approximately 20% (Duncan
and Prasse, 1986; McEwen, 1992). The circulating eo-
sinophil count exhibits diurnal variation in some spe-
cies; thus, in normal human subjects the highest and
lowest levels are seen in the evening and the morning,
respectively (Horn et al., 1975), whereas the opposite
occurs in horses (McEwen, 1992). Eosinophils are pre-
dominantly tissue cells and do not reenter the circula-
tion. The gastrointestinal tract, lung, and skin and, in
rats, the uterus during dioestrus or oestrogen treatment
(see XIV.F) are the principle sites of accumulation (Dem-
bele Duchesne et al., 1991), and histological studies with
human tissues have identified columnar epithelial sur-
faces as particularly rich in eosinophil infiltrates. Large
numbers of eosinophils can be found in tissues even
when the peripheral blood count is low, which suggests

that their longevity is enhanced once they leave the
circulation. It has been estimated that the number of
eosinophils in the bone marrow and tissues of rats is 300
times higher than the circulating count (Rytomaa,
1960). The tissue distribution of eosinophils in subjects
with disease has not been systematically quantified,
although it is curious that pathogen-free animals have
no eosinophils in their blood and tissue eosinophils are
difficult to find. This strongly suggests that an increase
in the circulating eosinophil count and retention of eo-
sinophils in tissues is disease-related (Spry, 1993), al-
though this might not apply to the gut (see V.E.1).

IV. Transcription Factors and Eosinophilia

Gene transcription is regulated in a highly coordi-
nated and complex fashion by a diverse family of DNA-
binding proteins known collectively as transcription fac-
tors. In diseases such as those associated with
peripheral blood eosinophilia, transcription factors may
play a key role in inducing or repressing critical genes
that control eosinopoiesis. Perhaps the most universal
and ubiquitously distributed transcription factors are
activator protein 1 (AP-1) and nuclear factor kB (NF-

TABLE 3
Contents of eosinophil granules

Granule Protein Reference(s)

Secondary (specific) granules
Major basic protein (core) Egesten et al. (1986); Peters et al. (1986)
Major basic protein (matrix) Torpier et al. (1988)
Eosinophil cationic protein (matrix) Egesten et al. (1986); Peters et al. (1986); Torpier et al. (1988)
Eosinophil-derived neurotoxin (matrix) Peters et al. (1986)
Eosinophil peroxidase (matrix) Okuda et al. (1981); Egesten et al. (1986); Enomoto and Kitani (1986);

Torpier et al. (1988)
Lysozyme (matrix) Stirling (1989)
Acid phosphatase (matrix) Ghidoni and Goldberg (1966); Bass et al. (1981)
Arylsulphatase B Parmley and Spicer (1974)
Catalase (core and matrix) Iozzo et al. (1982); Yokota et al. (1984)
Enoyl-CoA hydratase (core and matrix) Yokota et al. (1983)
3-Ketoacyl-CoA thiolase (core and matrix) Yokota et al. (1983)
b-glucuronidase (core and matrix) Yokota et al. (1984)
Cathepsin D (core and matrix) Yokota et al. (1984)
Elastase Lungarella et al. (1992)
Granulocyte/macrophage colony-stimulating factor (core) Levi Schaffer et al. (1995)
Interleukin-2 (core) Levi Schaffer et al. (1996)
Interleukin-4 (core) Moqbel et al. (1995)
Interleukin-5 (core) Dubucquoi et al. (1994)
Interleukin-6 (matrix) Hamid et al. (1992); Melani et al. (1993); Lacy et al. (1998)
Tumor necrosis factor a (matrix) Beil et al. (1993); Costa et al. (1993)
RANTES Ying et al. (1996)
Type II phospholipase A2 Blom et al. (1998)
Bactericidal/permeability-increasing protein Calafat et al. (1998)

Small granules
Acid phosphatase Parmley and Spicer (1974)
Arylsulphatase B Parmley and Spicer (1974)
Catalase Iozzo et al. (1982)
Cytochrome b558 Ginsel et al. (1990)
Elastase Lungarella et al. (1992)
Eosinophil cationic protein (matrix) Egesten et al. (1986)

Primary granules
Charcot-Leyden crystal protein Dvorak et al. (1990, 1991)

Lipid bodies
Cyclooxygenase Dvorak et al. (1992b, 1994); Bozza et al. (1997a)
5-Lipoxygenase Weller (1994); Bozza et al. (1997a)
15-Lipoxygenase Bozza et al. (1998)
Leukotriene C4 synthase Bozza et al. (1997a)
Eosinophil peroxidase Zabucchi et al. (1991); Dvorak et al. (1992a)
Esterase Monahan et al. (1981)
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kB), which are involved in the regulation and coregula-
tion of many genes. In contrast, other transcription fac-
tors have a more cell-specific distribution and regulate
the expression of a restricted number of genes. For ex-
ample, the transcription factors nuclear factor of acti-
vated T cells (NFAT) (Rao et al., 1997), guanine-ade-
nine-thymine-adenine (GATA-3) (D. H. Zhang et al.,
1997) along with NF-kB (Yang et al., 1998) are critically
important in controlling the IL-5 and eotaxin genes that
are probably essential for the differentiation, matura-
tion, and trafficking of eosinophils (see III.). Similarly,
in the lungs of mice that are deficient in the p50 subunit
of NF-kB, lymphocyte recruitment after allergen provo-
cation is attenuated compared to wild type animals due
to a reduction in the secretion of macrophage inflamma-
tory protein (MIP)-1a and MIP-1b (Yang et al., 1998).

Additional genes are also likely to regulate circulating
eosinophil number and eosinophilia associated with dis-
ease. In individuals with familial eosinophilia, a rare
disease encompassed by the generic term hypereosino-
philic syndrome that has no allergic or parasitic basis, a
locus (or loci) has been identified on region q31–q33 of
chromosome 5 which contains the cytokine gene cluster
for IL-3, IL-5, and GM-CSF (Rioux et al., 1998). Since no
functional polymorphisms were found within the en-
hancer, promoter, exons, or introns of any of these genes,
it has been speculated that a main cause of familial
eosinophilia is due to a novel gene that is situated within

region q31–q33 (Rioux et al., 1998). Indeed, this idea is
supported by the knowledge that greater than 100 anon-
ymous transcripts have been found in that region of
human chromosome 5 (Schuler et al., 1996). Martinez et
al. (1998) also have identified markers on the same
region of chromosome 5 that controls for circulating
eosinophil number as a percentage of total white leuko-
cytes.

V. G Protein-Coupled Receptors and Their
Ligands

G protein-coupled receptors are characterized by an
extracellular amino-terminal sequence followed by
seven transmembrane-spanning domains, with three ex-
tracellular and three intracellular loops, and an intra-
cellular carboxyl terminus. Conserved cysteine residues
within the amino-terminal sequence and in the third
extracellular loop are thought to form a disulfide bond
which is required for ligand binding, while a second
disulfide bond is probably formed between conserved
cysteine residues within the first and second extracellu-
lar loops. The functional responses that result from li-
gand binding are transduced by G proteins. These are
heterotrimeric proteins consisting of a, b, and g subunits
that each exist in multiple isoforms (20 a, five b, 10 g) in
mammalian cells. Several G proteins and/or subunits
thereof have been identified in human and guinea pig
eosinophils including Gas, Gai3, Ga0, Gaq/11, and Gb

(Agrawal et al., 1992; Lacy et al., 1995).
In excess of 17 G protein-coupled receptors have thus

far been identified on eosinophils (Table 4). These recep-
tors can couple to a vast array of effector proteins that
ultimately produce a host of functional responses result-
ing both in stimulation and suppression of eosinophil
activity. These are identified and discussed in detail
below.

A. Platelet-Activating Factor

1. Receptors and Signaling. The ether lipid, platelet-
activating factor (PAF), evokes its biological effects by
interacting with a classical seven transmembrane-span-
ning receptor that is composed of 342 amino acids and
has a molecular mass of approximately 39 kDa (Honda
et al., 1991; Nakamura et al., 1991). Radioligand-bind-
ing experiments have identified PAF receptors on many
cells, including eosinophils. However, until the early
1990s 3H-labeled PAF was the only radioligand avail-
able for this purpose and proved to be unsatisfactory for
several reasons. Notably, it causes activation of cells
and, with prolonged exposure, receptor down-regulation.
Furthermore, the lipophilicity of PAF gives rise to high
levels of nonspecific binding, “specific” nonreceptor bind-
ing, and the labeling of intracellular or internalized re-
ceptors, factors that hamper its utility for accurate de-
termination of cell surface receptor density and ligand
affinity (Dent et al., 1989). Nevertheless, estimates of Kd
(2.3 nM) and Bmax (104 fmol/106 cells) have been made

FIG. 3. Identification of single and multiple crystalloid cores in spe-
cific granules from streptolysin O-permeabilized guinea pig peritoneal
eosinophils stimulated with GTPgS and Ca21. Bar, 500 nm. Original
magnification, 55,0003. See II for further details.
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for 3H-labeled PAF in human eosinophils (Korth, 1996),
and it seems likely that the ligand-labeled sites repre-
sent specific receptors because binding was reversed by
unlabeled PAF and the PAF antagonist apafant (WEB
2086) (Korth, 1996).

The introduction of metabolically stable, hydrophilic
radiolabeled PAF antagonists such as [3H]apafant and
[3H]L-659,989 (Hwang et al., 1989), has largely circum-
vented the problems that have been encountered with
3H-labeled PAF. Thus, [3H]apafant labels a homoge-
neous population of noninteracting binding sites on
guinea pig and human eosinophils with Bmax values of
35,000 and 64,000 sites/cell, respectively (Ukena et al.,
1989, 1990). The observation that the binding of
[3H]apafant is concentration-dependent, saturable, re-
versible, of high affinity (Kd 5 15–20 nM), and is pre-
vented by a range of structurally distinct PAF antago-
nists and by a natural ligand, C16-PAF, indicate that
these binding sites represent bona fide receptors (Ladu-
ron, 1984). PAF receptor expression determined with
[3H]apafant is up-regulated after exposure (6–18 h) of
human eosinophils to IL-3, IL-5, and GM-CSF (Kishi-
moto et al., 1996a,b).

Pharmacological evidence is available for two PAF
receptors on guinea pig peritoneal eosinophils (Kroegel
et al., 1989a). This is derived from the finding that
PAF-induced Ca21 mobilization and degranulation are
inhibited by apafant with an affinity in the low nanomo-
lar range, whereas PAF-induced superoxide anion gen-
eration is approximately 1000 times less sensitive. Al-
though no corroborating evidence has thus far been
published, data are available for PAF receptor heteroge-
neity between cell types and, moreover, between species
(Lambrecht and Parnham, 1986; Hwang, 1988).

Some progress has been made in understanding the
cell-signaling pathways activated by PAF in leukocytes.
In guinea pig eosinophils loaded with fura-2/AM, the
[Ca21]i increases rapidly (approximately 4-fold) after
the addition of a maximally effective concentration (1
mM) of PAF (Kroegel et al., 1989b). As in many other
cells, this effect is transient, antagonized by apafant,
and not mimicked by lyso-PAF (Kroegel et al., 1989b,c).
Unlike leukotriene B4 (LTB4)- and C5a-mediated Ca21

mobilization (see V.B.1 and V.F.3), the Ca21 transient
evoked by PAF is not blocked by pertussis toxin (PTX)
excluding Gi and Go in PAF receptor-effector coupling
(Teixeira et al., 1997b). There is some controversy sur-
rounding the sources of Ca21 mobilized by PAF in
guinea pig eosinophils. Kroegel et al. (1989b) have pro-
vided evidence that Ca21 ions are derived primarily
from the extracellular compartment through ill-defined
ion channels that are blocked by Ni1 but are resistant to
classical 1,4-dihydropyridine Ca21 antagonists such as
nimodipine. Conversely, a primary role for intracellular
Ca21 stores also has been proposed (Minshall et al.,
1990). The reason for this difference is unexplored.

Exposure of human eosinophils to PAF also is associ-
ated with Ca21 mobilization that is similarly transient
(Koenderman et al., 1990; Kernen et al., 1991; Zoratti et
al., 1991; Wymann et al., 1995; Elsner et al., 1996a).
However, in contrast to guinea pig cells a number of
differences are apparent. In particular, Ca21 are liber-
ated predominately from intracellular stores (Zoratti et
al., 1991; Elsner et al., 1995) via a population of PAF
receptors that are sensitive to PTX (Kernen et al., 1991;
Wymann et al., 1995; Zeck Kapp et al., 1995). More
contemporary studies have found that PAF activates the
p21ras-extracellular-regulated kinase (ERK)-2 and Pt-

TABLE 4
Eosinophil-derived mediators and receptor expression

Mediators Receptors

Lipids Cytokines and
Chemokines Growth Factors G protein-Coupled Immunoglobulins Hematopoietins, IFN,

and TNF Families Miscellaneous

PAF IL-1a TNFa PAF Receptor FcaRIa.1-5 IL-3R IL-1R
LTB4

a IL-2 TNFb BLT Receptor FcaRib IL-5R IL-2R
LTC4 IL-3 PDGF Cys-LT Receptorb Fc«RI GM-CSFR IL-4R

IL-9R
TXA2 IL-4 VEGF fMLP Receptor Fc«RIIa IFNgR IL-13R
PGE2 IL-5 HB, EGF CCR1 Fc«RIIb IL-10R TGFbR
5-HETE IL-6 NGF CCR3 Mac-2/«BP TNFaRI PDGFR
15-HETE IL-8 Endothelinc CXCR1/2 FcgRId TNFaRII c-Kit
5,15-diHETE IL-10 C3aR FcgRIId CD30 CD4

IL-11c

8,15-diHETE IL-12 C5aR FcgRIIId CD40 CD9
14,15-diHETE IL-16 b2-adrenoceptor FcmRd CD44 CD52
LXA4 INFg NK1 receptor CD69 CR1 (cC1qR)
13-HODE TNFa Adenosine (A2 and A3) CD95 GC1qR

GM-CSF sstb NGFR CR3
MIP-1a Histamine (H1, H2, and H3) CR4
RANTES VIPb SCR
MIF EP2 HLA

P2Yc

a Guinea-pig and bovine eosinophils lack LTC4 synthetase and produce LTB4.
b Receptor subtype not known.
c Preliminary reports: Muro et al. (1999); Chakir et al. (1999); Raible et al. (1999); Dussault et al. (1999).
d Receptor can be induced.
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dIns 3-kinase-protein kinase B (PKB) pathways (Coffer
et al., 1998), and increases the open-state probability of
Ca21-activated K1-channels (Saito et al., 1997). These
latter two effects have been implicated in priming eosin-
ophils for SOZ- and A23187-mediated respiratory burst
(Saito et al., 1995; Coffer et al., 1998) and in PAF-
induced degranulation (see XII.B.4 and XII.G, respec-
tively). A role for protein kinase C (PKC) in the regula-
tion of the NADPH oxidase and eicosanoid generation
also is suggested by the findings that the PKC inhibitors
GF109203X and calphostin C suppress PAF-induced
H2O2 generation and enhance the elaboration of LTC4
and thromboxane (TX) (Dent et al., 1998). In this re-
spect, multiple species of PKC have been identified in
human eosinophils including the a, b1, b2, d, e, m, i, and
z isoforms (Bates et al., 1993; Evans et al., 1999), which
presumably subserve distinct, but as yet undefined,
functional roles.

If PAF releases a significant proportion of Ca21 from
intracellular stores, then what are the biochemical
mechanisms that bring this about? Classically, intracel-
lularly stored Ca21 can be released from the endoplasmic
reticulum by inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] for
which several distinct and specific receptors have been
defined (for review, see Joseph, 1996). It is now firmly
established that Ins(1,4,5)P3, in combination with diacyl-
glycerol (DAG), is derived from a minor membrane lipid,
PtdIns(4,5)P2 under the influence of a family of enzymes
collectively known as phospholipase C (PLC). Evidence
for such a mechanism in PAF-stimulated guinea pig
eosinophils is provided by the observation that PAF
enhances the incorporation of [3H]inositol into mem-
brane phospholipids (Kroegel et al., 1990a) and elicits a
rapid, transient, and apafant-sensitive increase in
Ins(1,4,5)P3 mass (Kroegel et al., 1991). Temporally, the
time course of Ca21 mobilization is preceded by the
increase in Ins(1,4,5)P3 mass consistent with a causal
relationship between these two parameters.

A PLC that readily hydrolyses PtdIns(4,5)P2 and
which may represent the enzyme responsible for agonist-
induced Ins(1,4,5)P3 accumulation in intact eosinophils
is present in guinea pig-washed eosinophil membranes
(Perkins, 1993). The enzyme is deoxycholate-dependent,
sensitive to Ca21 in the high nanomolar range, and exhib-
its a single pH optimum at pH 7.5. Kinetic studies
indicate that PtdIns(4,5)P2 is the preferred substrate
for PLC and that its activity is augmented by guanosine
59-(3-thio)triphosphate (GTPgS). These findings comple-
ment the observation that PAF stimulates GTPase ac-
tivity in eosinophil membranes in a concentration-de-
pendent and apafant-sensitive manner (Dent and
Barnes, 1993).

2. In Vitro Effects. PAF is a potent chemoattractant
and selectively promotes the migration of eosinophils
over neutrophils. The ability of PAF to promote direc-
tional migration is significantly increased in eosinophils
taken from asthmatic subjects both in remission and

during an attack when compared with healthy volun-
teers (Shindo et al., 1997), suggesting that they have
been primed in vivo. Possible candidate-priming agents
include GM-CSF, which enhances PAF-induced pulmo-
nary and cutaneous eosinophilia in guinea pigs (Sanjar
et al., 1990a) and mice (Yukawa et al., 1992), and IL-3
and IL-5, which prime murine eosinophils for enhanced
chemotactic activity induced by PAF (Yukawa et al.,
1992). Other proinflammatory effects of PAF include the
generation of a plethora of other bioactive lipids (Table
5) and the release of preformed mediators from both the
specific and small granules.

Guinea pig, bovine, and human eosinophils, when
challenged with PAF, display a marked increase in ox-
ygen consumption and liberate superoxide anions extra-
cellularly as a consequence of the activation of the
NADPH (respiratory burst) oxidase. In guinea pig cells,
this effect occurs at concentrations of PAF greater than
100-fold higher than are necessary to promote chemo-
taxis, TX production, degranulation, Ins(1,4,5)P3 accu-
mulation, and Ca21 mobilization (Kroegel et al., 1989a,
1991). However, the finding that oxidant production was
antagonized by apafant in those studies indicates that
this response also is PAF receptor-mediated. Further-
more, those data also imply that the PAF receptors on
eosinophils either are heterogeneous and mediate differ-
ent functional responses, or that PAF can recruit diverse
signaling pathways that have different sensitivities to
activation (Kroegel et al., 1989a). In addition to increas-
ing directly oxidative metabolism, low concentrations
of PAF that produce little, if any, superoxide anions
per se, prime the eosinophil NADPH oxidase to activation
by N-formyl-methionyl-leucyl-phenylalanine (fMLP)
(Zoratti et al., 1992) and serum-oponized zymosan (SOZ)
(Coffer et al., 1998). Likewise, the ability of human eo-
sinophils to form stable aggregates (i.e., undergo homo-
typic aggregation) in response to SOZ also is primed by
PAF (Koenderman et al., 1991; Blom et al., 1992). Mech-
anistically, the latter effect apparently involves a struc-
tural change in the complement receptor CR3 (see
IX.B.2) rather than an increase in receptor density
(Koenderman et al., 1991; Blom et al., 1992).

In addition to the aforementioned effects, PAF elicits
a multitude of less well defined responses including che-
mokine generation, aggregation, adhesion, and adhesion
molecule expression (see Table 5 for additional details).

3. In Vivo Effects. In guinea pigs, rabbits, and pri-
mates, aerosol and systemic administration of PAF re-
sults in the extravascular infiltration of eosinophils into
the lungs which resembles, both in amplitude and dura-
tion, that seen in response to allergen in sensitized an-
imals (Denjean et al., 1983; Arnoux et al., 1988; Lellouch
Tubiana et al., 1988; Sanjar et al., 1990b; Gundel et al.,
1991; Herd et al., 1992; Wegner et al., 1992). Compara-
ble observations have been made with rats given PAF
directly into the pleural cavity (Silva et al., 1989) and in
atopic individuals where intradermal administration of
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PAF produces a cellular infiltrate rich in eosinophils
that is reminiscent of the eosinophilia seen in the same
subjects after antigen provocation (Henocq and Var-
gaftig, 1988). Similarly, in individuals with seasonal
allergic rhinitis PAF, given intranasally and outside the
pollen season, evokes a marked increase in the number
of eosinophils (Klementsson and Andersson, 1992) and
in the concentration of ECP (Tedeschi et al., 1994) in the
nasal lavage fluid.

The ability of PAF to mimic many of the effects asso-
ciated with allergen challenge led to the hypothesis, in
the late 1980s, that PAF might play a central pathogenic
role in allergic inflammatory diseases (Barnes et al.,
1988; Page, 1988). That possibility prompted numerous
preclinical and clinical studies designed to evaluate the
potential anti-inflammatory activity of PAF antagonists.
In animal models of inflammation, a bewildering num-
ber of structurally dissimilar PAF antagonists have been
studied for their ability to suppress tissue eosinophil
accumulation in response to a variety of stimuli [e.g.,
lipopolysaccharide (LPS), bradykinin, IL-1b] and follow-
ing allergen provocation in sensitized animals. Table 6
identifies a cross-section of the current literature and

illustrates an equivocal role for PAF in allergic inflam-
mation. Of the 29 articles cited, 14 of them describe the
failure of PAF antagonists to reduce allergic eosinophilia
whereas the remainder report efficacy. In the clinical
situation, the PAF antagonists apafant (Freitag et al.,
1993; Spence et al., 1994), UK 74,505 (Kuitert et al.,
1993), modipafant (Kuitert et al., 1995), and BN 52021
(Hsieh, 1991) do not affect allergen-induced airway re-
sponses, implying that PAF is not a mediator of allergic
airway inflammation. However, PAF might merit “revis-
iting” since in 1997, Evans et al. reported that a highly
potent PAF antagonist, foropafant (SR 27417A), repro-
ducibly attenuated the late-phase response (LPR) in 12
male subjects with mild atopic asthma. Although mea-
surements of pulmonary granulocyte titers were not
made, the authors speculated that PAF may play a mi-
nor role in the genesis of the LPR by attracting eosino-
phils and other proinflammatory cells to the lung (Evans
et al., 1997). Taken together, the results of the afore-
mentioned studies are reminiscent of the early clinical
experience with cysteinyl-leukotriene (LT) receptor an-
tagonists and could indicate that complete antagonism
of the effects of PAF needs to be achieved before clinical

TABLE 5
Functional effects evoked by platelet-activating factor in eosinophils

Function Species Reference(s)

Activates NADPH oxidase Human Bruynzeel et al. (1986); Bruijnzeel et al. (1987); Kroegel et al. (1989c); Dri
et al. (1991); Zoratti et al. (1991); Tool et al. (1992); Horie and Kita
(1994); Elsner et al. (1995); Wymann et al. (1995); Dent et al. (1998a)

Activates NADPH oxidase Cow Freiburghaus et al. (1991)
Activates NADPH oxidase Guinea pig Kroegel et al. (1989a); Shute et al. (1990)
Primes NADPH oxidase to fMLP and SOZ Human Zoratti et al. (1992); Nagata et al. (1995b); Coffer et al. (1998)
Promotes chemotaxis and actin

polymerization
Human Wardlaw et al. (1986); Sigal et al. (1987); Tamura et al. (1987); Czarnetzki

and Csato (1989); Kurihara et al. (1989); Little and Casale (1991); Sun
et al. (1991); Fukuda et al. (1992); Miyagawa et al. (1992); Numao and
Agrawal (1992); Townley et al. (1994); Elsner et al. (1996a); Erger and
Casale (1996); Schweizer et al. (1996)

Promotes chemotaxis Horse Foster et al. (1992)
Promotes chemotaxis (weak) Guinea pig Sun et al. (1991)
Promotes chemotaxis Monkey Sun et al. (1991)
Promotes chemotaxis Rat Martins et al. (1989)
Promotes degranulation Human Kroegel et al. (1988, 1989c); Kernen et al. (1991); Horie and Kita (1994)
Promotes degranulation Guinea pig Kroegel et al. (1989a, 1991)
Promotes PGD2, PGE2, PGF2a and TX

formation
Human Foegh et al. (1986); Kroegel and Matthys (1993); Dent et al. (1998a)

Promotes PGE2, 6-keto-PGF2a, and TX
formation

Guinea pig Hirata et al. (1989); Giembycz et al. (1990)

Promotes a hypodense phenotype Human Kloprogge et al. (1989a); Yukawa et al. (1989a)
Promotes IL-8 release from GM-CSF-

primed eosinophils
Human Simon et al. (1995a)

Primes for IL-5-induced adherence Horse Foster et al. (1997)
Promotes LTC4 formation Human Weller et al. (1983); Kajita et al. (1985); Bruynzeel et al. (1986, 1987);

Tamura et al. (1988); Miyagawa et al. (1992); Dent et al. (1998a)
Promotes LTB4 formation Guinea pig Sun et al. (1989); Hirata et al. (1990)
Reduces L-selectin expression Human Smith et al. (1992); Neeley et al. (1993)
Promotes homotypic aggregation Guinea pig Teixeira et al. (1995c)
Primes for SOZ-induced homotypic

aggregation
Human Koenderman et al. (1991); Blom et al. (1992)

Increases CD23 expression and IgE
binding

Human Walsh et al. (1989, 1990c); Moqbel et al. (1990b); Kawabe et al. (1991)

Increases expression of ICAM-1 Eos-1 cell line Seguchi and Nakajima (1995)
Promotes lipid body formation Human Bozza et al. (1997a)
Increases CD11b/CD18 expression Human Walsh et al. (1991a); Zoratti et al. (1992); Neeley et al. (1993); Tsai et al.

(1993)
Promotes adherence to HUVECs and

BSA-coated plastic
Human Kimani et al. (1988); Lamas et al. (1988); Walsh et al. (1990b)
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benefit is seen. Alternatively, PAF simply might play
only a minor part in human asthma despite its promi-
nent role in many animal models of the disease.

B. Leukotriene B4

1. Receptors and Signaling. The BLT, or LTB4, recep-
tor, which is expressed on guinea pig, mouse, and prob-
ably human eosinophils, was cloned in 1997 from reti-
noic acid-differentiated HL-60 cells. This human
receptor is composed of 352 amino acids and is a member
of the seven transmembrane-spanning family of G pro-
tein-coupled receptors (Yokomizo et al., 1997). A cDNA
that encodes a 351-amino acid murine glycoprotein that
is 78% identical with the human BLT receptor has also
been identified and expressed in Chinese hamster ovary

(CHO) cells (Huang et al., 1998). An analysis of
[3H]LTB4 binding to membrane fractions prepared from
CHO cells, and retinoic acid-differentiated HL-60 and
COS-7 cells transfected with the cDNA for the human
and murine LTB4 receptor show similar binding charac-
teristics, with Kd values of 0.1, 0.14, and 0.15 nM, re-
spectively (Yokomizo et al., 1997; Huang et al., 1998).
Binding studies also have identified and partially char-
acterized the BLT receptor on murine and guinea pig
eosinophils (Maghni et al., 1991; Ng et al., 1991; Sehmi
et al., 1992a; Huang et al., 1998) also using [3H]LTB4 as
the radioligand. However, notable differences are appar-
ent between these studies. Using intact peritoneal eo-
sinophils from guinea pigs, Ng et al. (1991) reported that
[3H]LTB4 interacts with an apparently homogeneous

TABLE 6
In vivo studies in laboratory animals in which platelet-activating factor antagonists were shown to be active and inactive in attenuating induced

tissue eosinophil recruitment

PAF Antagonist Route of
Administration Species Comment(s) Reference(s)

Active
Y-24180 p.o. Guinea pig Attenuated recovery of eosinophils from the BAL fluid in

response to antigen
Kagoshima et al. (1997)

Y-24180 p.o. Guinea pig Attenuated antigen-induced LPRs and recovery of
eosinophils from BAL fluid

Inoue et al. (1992)

YM 264 p.o. Guinea pig Attenuated antigen-induced LPRs and infiltration of
eosinophils into tracheal mucosa

Arima et al. (1995)

UK 74,505 i.v. Rat Attenuated IL-1b-induced cutaneous eosinophilia Sanz et al. (1995)
UK 74,505 i.v. Guinea pig Attenuated cutaneous eosinophilia following passive

cutaneous anaphylaxis
Sanz et al. (1994)

BN 52021 p.o. Rabbit Attenuated corneal allograft eosinophilia Cohen et al. (1994)
CV 6209 i.p. Mouse Attenuated antigen-induced cutaneous eosinophilia Iwamoto et al. (1993b)
PCA 4248 p.o. Rat Attenuated antigen-induced pleural eosinophilia Martins et al. (1993)
SM 10661 p.o. Guinea pig Attenuated antigen-induced early and LPRs and recovery of

eosinophils from BAL fluid
Sugasawa et al. (1991)

Apafant* p.o. Guinea pig Attenuated antigen-induced bronchial eosinophilia Chand et al. (1992b)
Bepafant* i.p. Guinea pig Attenuated antigen-induced airway hyper-responsiveness

and pulmonary eosinophilia
Seeds et al. (1991)

Yangambin i.p. Rat Attenuated recovery of eosinophils from the pleural cavity
in response to antigen

Serra et al. (1997)

E-6123 p.o. Guinea pig Attenuated recovery of eosinophils from BAL fluid in
response to antigen

Tsunoda et al. (1991)

E-6123 p.o. Guinea pig Attenuated antigen-induced pulmonary eosinophilia Sakuma et al. (1990)
BN-52021 Local Rat Attenuated antigen-induced peritoneal eosinophilia Etienne et al. (1989a)
BN-52021 p.o. Guinea pig Attenuated antigen-induced airway hyper-responsiveness

and pulmonary eosinophilia
Coyle et al. (1988)

Inactive
CV 6209 i.p. Mouse Failed to affect SP-induced cutaneous eosinophilia Iwamoto et al. (1993b)
L-659,989 i.p. Guinea pig Failed to affect ozone-induced eosinophil infiltration into

airway mucosa
Tan and Bethel (1992)

RP 59227 p.o. Guinea pig Failed to affect eosinophil accumulation in BAL fluid in
response to antigen

Underwood et al. (1992)

Apafanta p.o. Guinea pig Failed to affect eosinophil accumulation in BAL fluid in
response to antigen

Underwood et al. (1992)

Apafanta i.v. Horse Failed to affect antigen-induced cutaneous eosinophilia Foster et al. (1995)
Apafanta i.d. Guinea pig Failed to affect cutaneous eosinophilia following passive

cutaneous anaphylaxis
Weg et al. (1994)

Apafanta p.o. Guinea pig Failed to affect accumulation of eosinophils in BAL fluid in
response to antigen

Havill et al. (1990)

Apafanta i.p. Rat Failed to affect accumulation of eosinophils in BAL fluid in
response to compound 48/80

Martins et al. (1990)

BN 50730 p.o. Rat Failed to affect LTB4, bradykinin, and LPS-induced pleural
eosinophilia

Pires et al. (1994)

BN 52021 Local Rat Failed to affect bradykinin-induced pleural eosinophilia Pasquale et al. (1991)
SDZ 64-412 p.o. Guinea pig Failed to affect antigen-induced pulmonary eosinophilia Ishida et al. (1990)
SDZ 64-412 p.o. Guinea pig Failed to affect accumulation of eosinophils in BAL fluid in

response to antigen
Havill et al. (1990)

SR 27417 s.c. Mouse Failed to affect antigen-induced peritoneal eosinophilia Zuany-Amorim et al. (1993)
UK 74,505 i.v. Guinea pig Failed to affect SP-induced cutaneous eosinophilia Walsh et al. (1995a)
a Apafant WEB 2086; Bepafant WEB 2170.
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population of binding sites with a Bmax of 40,000 sites
per cell and a Kd of 2.8 nM, which is approximately
10-fold lower than that reported in the transfection ex-
periments described by Yokomizo et al. (1997). Similar
results were reported for the murine receptor (Huang et
al., 1998). The sites labeled on eosinophils probably rep-
resent functional receptors since various compounds re-
lated structurally to LTB4 compete with the radioligand
with affinities that correlate closely with their ability to
induce chemotaxis and to evoke the formation of super-
oxide anions (Ng et al., 1991). Intriguingly, the rank
order of potency for the displacement of [3H]LTB4 from
intact peritoneal eosinophils [LTB4 . 20-hydroxy-LTB4
. 12R-hydroxyeicosatetranoic acid (HETE) . 12S-
HETE . 20-carboxy-LTB4 . 5S,12S-dihydroxyeicosap-
entanoic acid (diHEPE) (Ng et al., 1991)] differs from the
rank order obtained using membranes from COS-7 cells
transfected with the LTB4 receptor [LTB4 . 20-hydroxy-
LTB4 . 20-carboxy-LTB4 . 5S,12S-diHEPE . 12R-
HETE . 12S-HETE (Yokomizo et al., 1997)] which
might indicate species difference, LTB4 receptor hetero-
geneity (see below), and/or the existence of different
conformations of a single LTB4 receptor. With respect to
the two latter possibilities, Maghni et al. (1991) reported
that [3H]LTB4 interacts with a heterogeneous popula-
tion of binding sites on guinea pig alveolar eosinophils;
approximately 1000 sites/cell are labeled with high af-
finity (Kd 5 1 nM), whereas 5500 sites/cell are labeled
with low affinity (Kd 5 63 nM). Identical results have
been obtained with guinea pig peritoneal eosinophils
(Sehmi et al., 1992a). Thus, a small population (Bmax 5
900 sites/cell) of receptors for which LTB4 has high af-
finity (Kd 5 0.3 nM) were identified by radioligand bind-
ing along with a large number of sites (60,000/cell) at
which LTB4 has relatively low affinity (Kd 5 140 nM).
Again, the finding that various metabolites of LTB4 com-
peted with [3H]LTB4 for binding to alveolar eosinophils
with a rank order of potency in good agreement with
their ability to induce chemotaxis (Maghni et al., 1991)
supports the belief that the high-affinity sites represent

bona fide receptors. Of considerable interest is the role of
the two populations of receptor expressed by these cells.
Maghni et al. (1991) have considered the hypothesis,
posed originally by Goldman and Goetzl (1984), that
they mediate different functional responses: the receptor
for which LTB4 has high affinity subserving chemokine-
sis and chemotaxis, the receptor for which LTB4 has
low-affinity mediating respiratory burst and prostanoid
generation. Support for this idea derives from affinity
estimates of the LTB4 antagonist U-75302, which differs
significantly (;17-fold) between the two populations of
receptor (Maghni et al., 1991). Collectively, the available
data suggest that peritoneal eosinophils express the
same LTB4 receptor that is labeled with high affinity by
[3H]LTB4 on guinea pig alveolar eosinophils [albeit at a
much higher (; 40-fold) density]. A reason for the in-
ability of Ng et al. (1991) to identify receptors on guinea
pig peritoneal eosinophils for which LTB4 has low-affin-
ity may relate to the fact that in those studies [3H]LTB4
was not used at concentrations that would detect the
low-affinity sites.

LTB4 exerts a number of effects on eosinophils (Table
7) and progress has been made in understanding the
second messenger pathways underlying LTB4 receptor
signal transduction (Fig. 4). In guinea pig eosinophils,
which can be obtained in large numbers and of high
purity, LTB4 induces a rapid and transient accumula-
tion of Ins(1,4,5)P3 and elevates [Ca21]i via a PTX-sen-
sitive pathway (Subramanian, 1992; Perkins et al.,
1995; Teixeira et al., 1997b; Lindsay et al., 1998c; Huang
et al., 1998). However, Ca21 mobilization (EC50 5 0.6
nM) occurs without a detectable increment in
Ins(1,4,5)P3 mass (EC50 5 200 nM), which suggests that
they are unrelated events. Indeed, the Ca21 ions mobi-
lized by LTB4 are extracellular in origin and enter the
cell through a PTX-sensitive, receptor-operated Ca21

channel (Subramanian, 1992; Perkins et al., 1995; Lind-
say et al., 1998a,c). In addition to coupling to PLC, LTB4
also promotes the extracellular release of [3H]AA (Lind-
say et al., 1998a,b,c). This effect is due to the direct

TABLE 7
Functional effects evoked by LTB4 in eosinophils

Function Species Reference(s)

Activates NADPH oxidase Human Palmblad et al. (1984)
Activates NADPH oxidase Guinea pig Maghni et al. (1991); Ng et al. (1991); Rabe et al. (1992); Subramanian (1992);

Perkins et al. (1995); Lindsay et al. (1998c)
Promotes chemotaxis Human Czarnetzki and Mertensmeir (1985); Czarnetzki and Rosenbach (1986); Czarnetzki

and Csato (1989); Numao and Agrawal (1992); Kim et al. (1994)
Promotes chemotaxis Horse McEwen et al. (1990)
Promotes chemotaxis Guinea pig Taylor et al. (1989, 1991); Coeffier et al. (1991a); Ng et al. (1991); Sun et al. (1991)
Promotes chemotaxis Mouse Huang et al. (1998)
Promotes homotypic aggregation Guinea pig Teixeira et al. (1995c)
Promotes histaminase release Guinea pig Popper et al. (1989)
Promotes peroxidase release Guinea pig Popper et al. (1989)
Promotes chemokinesis Human Spada et al. (1994)
Promotes PLA2 activity/AA release Guinea pig Perkins (1993); Lindsay et al. (1998a,b,c)
Promotes prostanoid formation Guinea pig Maghni et al. (1991); Souness et al. (1994)
Increases CR1 expression Human Nagy et al. (1982)
Increases Fc«RII (CD23) expression

and binding of IgE
Human Walsh et al. (1989); Moqbel et al. (1990b); Walsh et al. (1990c)
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coupling of the BLT receptor to phospholipase A2 (PLA2)
since it is preserved under conditions where signaling
through PLC is prevented (Lindsay et al., 1998c). More-
over, the elaboration of [3H]AA is biphasic (Perkins,
1993) and involves the activation of two PTX-sensitive
PLA2s in these cells; one of these is Ca21-dependent and
is activated by low concentrations of LTB4 whereas the
other apparently does not require Ca21 for activity and
is activated by high concentrations of LTB4 (Lindsay et
al., 1998a,c). Exposure of guinea pig eosinophils to LTB4
also causes a rapid activation of ERK-1, ERK-2 (Araki et
al., 1995; Lindsay et al., 1998b), and the src-related
tyrosine kinases, p53lyn, and p56lyn (Lindsay et al.,

1998a); it does not activate phospholipase D (PLD) (Per-
kins et al., 1995).

A comparison of the concentration-response relation-
ships which describe a number of biochemical responses
evoked by LTB4 implies that the increase in [Ca21]i and
the subsequent activation of the Ca21-dependent PLA2
and ERK is mediated via the BLT receptor for which
LTB4 has high affinity. In contrast, Ins(1,4,5)P3 accu-
mulation (index of PLC activity) and the activation of
Ca21-independent PLA2 is mediated by the BLT recep-
tor that is recognized by LTB4 with low affinity. In
agreement with Maghni et al. (1991), those data support
the idea that the two populations of the LTB4 receptor
mediate chemotaxis and activation of NADPH oxidase,
respectively.

2. In Vivo Effects. A number of in vivo animal models
have been developed to establish the potential patho-
genic role of LTB4 in allergic eosinophil inflammatory
disorders and autoimmune diseases such as multiple
sclerosis and asthma. In 1996, Gladue et al. reported
that the LTB4 antagonist CP 105,696 abolished the abil-
ity of encephalogenic T lymphocytes, injected into naı̈ve
mice, to evoke two cardinal features of experimental
allergic encephalomyelitis (multiple sclerosis): paralysis
and weight loss. Moreover, the protection was associated
with a 97% reduction in the accumulation of eosinophils
to the lower spinal cord as determined by light and
electron microscopy, and by the level of EPO (Gladue et
al., 1996). Those findings have important implications
since they show that agonism of LTB4 receptors results
in eosinophil recruitment and that they play a hitherto
unrecognized role in the pathogenesis of experimental
allergic encephalomyelitis. Clearly, the possible utility
of LTB4 antagonists in the treatment of human multiple
sclerosis, and the part eosinophils play in that disease,
merits evaluation.

With respect to asthmatic inflammation, LTB4 given
by the inhaled route promotes eosinophil influx into the
airways of guinea pigs and Brown Norway rats (Silbaugh
et al., 1987; Richards et al., 1991b), which is entirely con-
sistent with its chemotactic activity in vitro. Moreover,
pulmonary eosinophilia after allergen provocation of sen-
sitized animals is attenuated by LTB4 antagonists (Rich-
ards et al., 1989, 1991b), implicating immunologically
released LTB4 as an important chemoattractant. In this
respect, it is noteworthy that allergen challenge of sensi-
tized mice is associated with an increase in BLT receptor
mRNA levels in lung tissue with a time course that parallel
eosinophil influx (Huang et al., 1998). Despite the afore-
mentioned data, the mechanisms responsible for allergen-
induced eosinophil recruitment in humans in vivo is little
investigated. However, the possibility that LTB4 is an im-
portant chemotaxin has been proposed following the obser-
vation that eosinophils harvested from the airways of rag-
weed-sensitive, allergic volunteers and subjected to
segmental antigen challenge were significantly less sensi-
tive to LTB4-driven chemotaxis studied ex vivo when com-

FIG. 4. LTB4-induced signaling in guinea pig peritoneal eosinophils.
Scheme A, low concentrations (1 pM to 10 nM) of LTB4 induce a PTX-
sensitive increase in the [Ca21]I and activate the src-related tyrosine
kinase lyn and the raf-1/MEK-1/2/ERK-1/2 protein kinase cascade. The
increase in [Ca21]I is due exclusively to influx of extracellular Ca21,
whereas the activation of lyn, is thought to mediate the activation of a
Ca21-dependent PLA2 (possibly cPLA2) and the subsequent release of AA.
Scheme B, higher concentrations (100 nM to 1 mM) of LTB4 activate PLC,
with attendant generation of Ins(1,4,5)P3, and a Ca21-independent PLA2
(possibly iPLA2) with a further liberation of AA. LTB4 also is thought to
stimulate a tyrosine kinase-dependent pathway that is implicated in the
activation of the NADPH oxidase. See V.B for additional details.
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pared with peripheral blood eosinophils purified from the
same individuals (Kim et al., 1994). The additional finding
that PAF- and fMLP-induced chemotactic responses in the
two populations of cell were identical led Kim et al. (1994)
to conclude that eosinophils had been exposed to LTB4 in
vivo, and that this provided evidence that allergen-induced
pulmonary eosinophilia is partly driven by immunologi-
cally generated LTB4. However, a subsequent clinical
study with the LTB4 antagonist LY 293111 failed to impli-
cate LTB4 in allergen-induced early and LPRs, and did not
reduce eosinophil numbers recovered in bronchoaveolar
lavage (BAL) fluid (Evans et al., 1996).

C. Cysteinyl Leukotrienes

Two receptors (Cys-LT1 and Cys-LT2) for the cysteinyl
LTs, which include LTC4, LTD4, and LTE4, have been
classified pharmacologically but supporting molecular
evidence is still awaited. Both receptors couple predom-
inantly through the Gq/11 class of heterotrimeric GTP-
binding proteins, and it is highly likely that they are
members of the seven transmembrane-spanning family
of receptors (see Coleman et al., 1995 for additional
details). Currently, selective antagonists are available
only for the Cys-LT1 receptor and these have been used
to identify those receptors on eosinophils. However, an-
tagonist affinities have not been calculated and the as-
signment of eosinophil leukotriene receptors as Cys-LT1
is equivocal.

1. In Vitro Effects. Relatively little is known of the
pharmacological actions of cysteinyl-leukotrienes on eo-
sinophil function compared to those of LTB4. Although
early studies failed to demonstrate that LTD4 possessed
chemoattractant activity (Nagy et al., 1982; Camp et al.,
1983), convincing evidence is now available to the con-
trary. Using a novel in vitro method, which allows the
quantification of migration distance and vectorial orien-
tation, it has been shown that LTD4 is a potent chemoat-
tractant for human eosinophils, with activity in the sub-
nanomolar range. Moreover, LTD4-induced chemotaxis
is antagonized by SK&F 104353, suggesting that Cys-
LT1 receptors are involved (Spada et al., 1994, 1997). In
contrast, LTD4 does not increase the chemokinetic re-
sponse of eosinophils above spontaneous migratory ac-
tivity (Spada et al., 1994).

2. In Vivo Effects. In laboratory animals, LTD4 and
LTE4 given locally and systemmically can stimulate the
accumulation of eosinophils into various sites including
the skin, eye, and lungs (Spada et al., 1986, 1988; Chan
et al., 1990; Foster and Chan, 1991; Woodward et al.,
1991; Wegner et al., 1993; Underwood et al., 1996). For
example, in one study guinea pig eosinophils were la-
beled with [111In]oxime and injected (i.v.) into recipient
animals (naı̈ve and sensitized), and the effect of LTD4
and allergen on their emigration into the conjunctiva
was monitored. Using that model, it was consistently
found that LTD4 and allergen significantly enhanced
conjunctival radioactivity by a mechanism that was

abolished (LTD4) and reduced by 50% (allergen) by the
Cys-LT1 receptor antagonist MK-571 (Chan et al., 1990).
Significantly, LTD4 neither promotes the infiltration of
eosinophils into the skin of guinea pigs following intra-
dermal administration nor is it active in other ocular
anterior segment structures such as the iris, cornea, and
ciliary body after topical or intracameral administration
(Woodward et al., 1991). Thus, it appears that LTD4
regulates eosinophilia in a tissue-dependent manner.

With respect to pulmonary eosinophilia, Underwood
et al. (1996) reported that administration of LTD4 by
aerosol to conscious guinea pigs increased the number of
eosinophils in the BAL fluid and in the bronchi and
subepithelium by a mechanism sensitive to the Cys-LT1
receptor antagonist pranlukast. Intriguingly, LTD4
evoked a sustained eosinophilia for up to 4 weeks after
single exposure, although it was not established
whether this was due to continued trafficking of eosin-
ophils to and away from the lung, or to the enhanced
survival of the same population of invading cells. This
nonbronchoconstrictor activity of LTD4 was mediated
indirectly through the liberation of IL-5 (Underwood et
al., 1996). Although the target cells at which LTD4 acts
to produce this effect have not been determined, the
limited number of cells that secrete IL-5 suggests that
resident T lymphocytes are prime candidates.

In asthmatic subjects, inhalation of LTD4 and LTE4,
the most stable cysteinyl-LT, promotes pulmonary eo-
sinophilia in the sputum (Diamant et al., 1997) and
airway biopses (Laitinen et al., 1993), respectively.
These findings are consistent with studies performed in
animal models of asthma including the rat (Asano et al.,
1992; Harris et al., 1997), rabbit (Herd et al., 1992),
guinea pig (Gulbenkian et al., 1990; Nakagawa et
al., 1993; Yeadon et al., 1993; Chabot-Fletcher et al.,
1995; Seeds et al., 1995; Tohda et al., 1997), and mouse
(Henderson et al., 1996) where Cys-LT1 antagonists
and inhibitors of 5-lipoxygenase and 5-lipoxygenase-
activating protein (FLAP) reduce allergen-stimulated
pulmonary eosinophilia. Although similar results have
yet to be convincingly confirmed in clinical asthma, pre-
liminary data are available on the effect of the Cys-LT1
antagonist montelukast on eosinophil numbers and ECP
content of sputum taken before and after allergen chal-
lenge (Grootendorst et al., 1997; Leff et al., 1997). In
agreement with results obtained from studies examin-
ing the effect of a single dose of inhaled glucocorticoste-
roids (Pizzichini et al., 1995), a short course of treatment
(10 mg administered 36 h and 12 h before and 12 h after
allergen) with oral montelukast failed to reduce sputum
eosinophilia and ECP content despite protecting against
allergen-induced airway responses (Grootendorst et al.,
1997). In contrast, treatment of asthmatic subjects with
montelukast for 4 weeks (10 mg daily) significantly re-
duced sputum eosinophil numbers compared to those of
placebo (Leff et al., 1997), indicating that prolonged
administration of asthmatic individuals with Cys-LT1
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receptor antagonists could be required before an anti-
inflammatory effect is seen. Clinical studies with
zafirlukast (Calhoun et al., 1998) and montelukast (Reiss
et al., 1996) have demonstrated a reduction in inflamma-
tory cell number that appears in the BAL fluid of asth-
matic subjects after segmental allergen challenge and a
decrease in the titer of circulating blood eosinophils, re-
spectively. A reduction in circulating blood eosinophils also
has been reported in patients with nocturnal asthma fol-
lowing treatment with the 5-lipoxygenase inhibitor zileu-
ton, which was associated with clinical improvement
(Wenzel et al., 1995). Collectively, the implications of these
data are clear: Cys-LT1 antagonists, in addition to acting
as bronchodilators, possess additional “anti-inflammatory”
properties that might contribute to their therapeutic util-
ity in diseases such as asthma.

D. N-Formyl-Methionyl-Leucyl-Phenylalanine

Two variants of the human fMLP receptor have been
isolated from a CDM8 expression library prepared from
mRNA extracted from dibutyryl cyclic AMP-differenti-
ated HL-60 cells (Boulay et al., 1990a). Both recombi-
nant forms of the receptor are composed of 350 amino
acids, have a predicted molecular mass of 38 kDa, but
differ from each other by two residue changes at posi-
tions 101 and 346; significant differences also are appar-
ent at the 39- and 59-untranslated regions (Boulay et al.,
1990a). Expression of these proteins in COS-7 cells re-
sults in the appearance of two populations of a highly
glycosylated receptor for which the hydrophilic ligand
N-fMLP-lysine has high affinity with Kd values of 0.5 to
1 nM and 5 to 10 nM (Boulay et al., 1990b). Moreover,
several transcripts have been identified by Northern
blot analysis, suggesting that the fMLP receptor is a
family of closely related proteins.

At present, there are no molecular data concerning
the nature of the fMLP receptor(s) expressed by eosino-

phils of any species. However, functionally, fMLP elicits
a variety of effects in isolated cells, some of which are
listed in Table 8. Less is published on the in vivo effects
of formylated peptides, although in guinea pigs fMLP
promotes lumenal chemotaxis of eosinophils as assessed
by histology and differential cell counts (Munoz et al.,
1997a). Intriguingly, that effect is attenuated by the
LTB4 antagonist LTB4 dimethyl amide, by zileuton, a
5-lipoxygenase inhibitor, and by zafirlukast, a Cys-LT1
antagonist, indicating that the ability of fMLP to facili-
tate the migration of eosinophils from the lamina pro-
pria to the airway lumen of guinea pigs is indirect and
requires the liberation of LTB4 and LTD4 (Munoz et al.,
1997a).

Compared to other G protein-coupled receptors, rela-
tively little is known of the signaling pathways recruited
following ligation of the fMLP receptor on eosinophils. It
is established that fMLP promotes a rapid and transient
increase in [Ca21]i in both human (Yazdanbakhsh et al.,
1987b; Wymann et al., 1995) and guinea pig eosinophils
(Kroegel et al., 1990b) that is believed to be important
for the generation of oxygen-derived free radicals
(Kernen et al., 1991). Furthermore, many of the func-
tional effects elicited by fMLP including degranulation
(Kita et al., 1991a), activation of the NADPH oxidase
(Kernen et al., 1991), the release of IL-8 (Miyamasu et
al., 1995), as well as intracellular markers of activation
(stimulation of PLC, Ca21 mobilization) are mediated by
a PTX-sensitive mechanism(s), indicating the involve-
ment of one of more members of the Gi or Go family of
heterotrimeric GTP-binding proteins.

E. Chemokines

Chemokines are an expanding superfamily of proteins
with molecular masses of between 8 and 10 kDa (for
reviews, see Horuk, 1994; Power and Wells, 1996; Rap-
ort et al., 1996a). Characteristically, human chemokines

TABLE 8
Functional effects evoked by N-formyl methionyl leucyl phenylalanine in eosinophils

Function Species Reference(s)

Activates the NADPH oxidase Human Palmblad et al. (1984); Sedgwick et al. (1985); Yazdanbakhsh et al. (1987a);
Koenderman and Bruijnzeel (1989); Sedgwick et al. (1990b); Dri et al.
(1991); Kernen et al. (1991); White et al. (1993); Wymann et al. (1995)

Weak chemoattractant Human Ogawa et al. (1981b); Morita et al. (1989a,b)
Releases b-glucuronidase (weak effect) Human Morita et al. (1989b)
Releases EPO Human Kernen et al. (1991); White et al. (1993)
Releases EDN Human Kita et al. (1991a)
Promotes LTC4 generation Human Fitzharris et al. (1986); Owen et al. (1987, 1991); Takafuji et al. (1991, 1992);

White et al. (1993)
Increases CR3 expression Human Neeley et al. (1993)
Reduces L-selectin expression Human Neeley et al. (1993)
Promotes adherence to HUVECs and

serum-coated plastic
Human Kimani et al. (1988)

Promotes PAF generation Human Lee et al. (1984); Triggiani et al. (1992)
Promotes MCP-1 release Human Izumi et al. (1997)
Promotes IL-8 release Human Miyamasu et al. (1995)
Activates the NADPH oxidase Guinea pig Kroegel et al. (1990b)
Promotes EPO release Guinea pig Kroegel et al. (1990b)
Promotes thromboxane generation Guinea pig Hirata et al. (1989); Giembycz et al. (1990)
Promotes prostacyclin generation Guinea pig Hirata et al. (1989)
Chemoattractant Horse McEwen et al. (1990)
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contain four distinct and conserved cysteine residues
that have provided the basis of their classification either
as CXC or a chemokines, where the first two cysteine
residues are separated by an amino acid, or CC or b
chemokines, where the first two cysteines are adjacent.
Two other chemokine families have been described: C (or
g) chemokines that contain a single cysteine residue and
include lymphotactin, and the CX3C chemokine family
(also known as d chemokines) where three amino acids
separate the two cysteine residues, of which fractalkine
and neurotactin are examples. The CXC chemokines
generally are involved in the recruitment of neutrophils
and have been implicated in acute inflammatory re-
sponses. In contrast, CC chemokines exert their actions
upon other leukocyte populations, including eosinophils,
monocytes, and T lymphocytes, and are believed to be
involved in the pathogenesis of chronic inflammation.
Four CXC and eight CC chemokine receptors have been
cloned thus far that are recognized by a selective range
of chemokines with characteristic rank orders of potency
(see Gerard and Gerard, 1994; Murphy, 1994; Ben Ba-
ruch et al., 1995; Combadiere et al., 1995, Gao and
Murphy, 1995; Power et al., 1995; Hoogewerf et al.,
1996; Ponath et al., 1996a,b; Power and Wells, 1996;
Raport et al., 1996b; Samson et al., 1996; Heath et al.,
1997). It is this diversity of chemokine receptor expres-
sion and the selective release of chemokines that provide
a mechanism for the recruitment of different leukocyte
populations to inflammatory sites. Moreover, in the con-
text of asthma, chemokines activate distinct cellular and
biochemical pathways that act in a coordinated fashion
to elicit complex pathophysiological changes such as eo-
sinophilia and airways hyperreactivity (Gonzalo et al.,
1998).

Of the multitude of chemokine receptors thus far iden-
tified, human eosinophils express CCR1, CCR3, and pos-
sibly a receptor for IL-8 that is either CXCR1 or CXCR2
(Table 9). The pharmacological properties of these recep-
tors and the functional responses they subserve are dis-
cussed below.

1. CC Chemokines. The eotaxin receptor, or CCR3, is
selectively expressed upon eosinophils, basophils, and
CD41 T lymphocytes (Ponath et al., 1996a), and is a
major binding site for CC chemokines (Daugherty et al.,
1996; Gao et al., 1996; Kitaura et al., 1996; Ponath et al.,
1996b; Forssmann et al., 1997; Heath et al., 1997). CCR3
has been cloned from guinea pig (Sabroe et al., 1998),
murine (Gao et al., 1996), and human eosinophils
(Ponath et al., 1996a), and the latter has been trans-

fected into AML14.3D10 (Daugherty et al., 1996) and
murine pre-B lymphoma cell lines (Ponath et al., 1996a)
where it binds eotaxin, regulated on activation, normal
T-expressed and secreted (RANTES), and monocyte che-
motactic protein (MCP) 3 at levels that are indistin-
guishable from those achieved in binding studies with
primary eosinophils. Furthermore, a study using an an-
tagonistic monoclonal antibody demonstrated that
.95% of the eosinophil’s response evoked by eotaxin,
RANTES, MCP-2, MCP-3, and MCP-4 was mediated
through CCR3 (Heath et al., 1997). Eosinophils also
express low levels of the chemokine receptor CCR1,
which appears to mediate the effects of MIP-1a (Daugh-
erty et al., 1996). The expression of CCR1 and CCR3 is
up-regulated during the maturation of eosinophilic
HL-60 cells, although the kinetics of these effects is
different with CCR1 levels rising first (Tiffany et al.,
1998). Significantly, increased CC chemokine receptor
expression correlates with the development of specific
binding sites for MIP-1a and eotaxin, and the accompa-
nying ability of the cells to generate Ca21 and chemo-
tactic responses (Tiffany et al., 1998). CCR3 expression
also is increased on eosinophilic HL-60 cells by IL-5,
suggesting that the chemokine receptors represent a
marker of late eosinophilic differentiation (Tiffany et al.,
1998).

Cloning and sequencing studies have established that
the human CCR3 is composed of 355 amino acids with
an approximate molecular mass of 41 kDa (Daugherty et
al., 1996; Ponath et al., 1996a,b). The receptor contains
four cysteine residues at amino acids 24, 106, 183, and
273, and a DRYLAIVHA motif between residues 130 and
138, that is characteristic of all chemokine receptors. In
addition, the receptor contains two PKC phosphoryla-
tion sites, one in the third intracellular loop at amino
acid 231 and the second in the cytoplasmic tail at posi-
tion 333. Eight serine/threonine residues also are
present within the cytoplasmic tail, providing additional
possibilities for post-translational modifications (Ponath
et al., 1996a,b). Binding studies have demonstrated that
eotaxin, RANTES, and MCP-3 bind to a single popula-
tion of noninteracting sites (Bmax 5 40,000 per cell) with
affinities of 0.1, 2.7, and 3.1 nM, respectively (Daugherty
et al., 1996). The guinea pig CCR3 is a 358-amino acid
protein that shares 67 and 69% primary sequence iden-
tity to its human and murine homologs, respectively
(Sabroe et al., 1998).

CC chemokines induce eosinophil chemotaxis and in-
crease the intracellular free Ca21 concentration and ac-

TABLE 9
Human chemokine receptors expressed by eosinophils and their endogenous ligands

Chemokine Subfamily Nomenclature Endogenous Ligand(s)

CXC chemokines CXCR1 IL-8, GCP-2
CXCR2 IL-8, GCP-2, GROa, GROb, GROd, NAP-2, ENA-78

CC chemokines CCR1 MIP1a, RANTES, MCP-2, MCP-3, MCP-5, leukotactin-1
CCR3 Eotaxin, eotaxin-2, leukotactin-1, MCP-3, MCP-4, RANTES
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tin polymerization that is associated with this response.
These include eotaxin-1 (Jose et al., 1994b; Elsner et al.,
1996b; Garcia Zepeda et al., 1996a), eotaxin-2 (Forss-
mann et al., 1997), RANTES, (Kameyoshi et al., 1992,
1994; Rot et al., 1992; Alam et al., 1993; Kameyoshi et
al., 1992, 1994; Schweizer et al., 1994; Elsner et al.,
1996b), MCP-2 (Noso et al., 1994; Weber and Dahinden,
1995), MCP-3 (Dahinden et al., 1994; Noso et al., 1994;
Elsner et al., 1996b), and MCP-4 (Garcia Zepeda et al.,
1996b; Stellato et al., 1997). In contrast, the related
chemokines MCP-5 (Sarafi et al., 1997) and MIP-1a (Rot
et al., 1992; Dahinden et al., 1994) are relatively weak
chemoattractants.

In addition, CC chemokines induce a range of addi-
tional cellular responses in eosinophils and display a
similar spectrum of activities. Thus, RANTES, eotaxin,
eotaxin-2, MIP-1a, and MCP-4 activate the NADPH ox-
idase (Rot et al., 1992; Chihara et al., 1994; Kapp et al.,
1994; Elsner et al., 1995, 1996b; Tenscher et al., 1996;
Elsner et al., 1998; Petering et al., 1998), transiently
promote CR3- and VLA-4-dependent adherence to fi-
bronectin and vascular cell adhesion molecule (VCAM) 1
(Weber et al., 1996), enhance the expression of CD11b
(Alam et et., 1993; Tenscher et al., 1996), and stimulate
the release of IL-8 from eosinophils primed with GM-
CSF (Simon et al., 1995b). In addition, activation of
CCR3 enhances firm adhesion of eosinophils to human
umbilical vein endothelial cells (HUVECs) through a4
and b2 intergrins even in shear flow (Kitayama et al.,
1998). Many of the aforementioned eosinophil responses
are inhibited by PTX, indicating that CCR1 and CCR3
can couple to their effectors through Gi and/or Go.

In vivo, eotaxin and eotaxin-2 selectively promote cu-
taneous eosinophilia in humans (Forssmann et al.,
1997). Moreover, in allergic reactions, these chemokines
are believed to cooperate with IL-5 in the mobilization
and subsequent “homing” of eosinophils to specific tis-
sues (see XII.A.3). Similarly, RANTES when injected
into the skin of dogs promotes a local eosinophilia
(Meurer et al., 1993). In asthmatic subjects, allergen
provocation is associated with an increase in mRNA
transcripts and protein for eotaxin that appears before
the development of the LPR and infiltration of eosino-
phil into the airways (Brown et al., 1998). Significantly,
at late time points, when eotaxin expression declined,
the number of eosinophils recovered from the BAL fluid
continued to rise, suggesting that eotaxin contributes
only to the early phase of eosinophilia and that other
mediators regulate the persistent eosinophilia (Brown et
al., 1998).

Although eotaxin expression usually is associated
with inflammation, it also is expressed basally and is
involved in the fundamental baseline trafficking of eo-
sinophils from the circulation to tissues in health (Mat-
thews et al., 1998). However, this appears to be re-
stricted to the gut where appreciable degranulation is
also common (Kato et al., 1998b).

RANTES also promotes degranulation of eosinophils
with the release of ECP and EDN (Alam et al., 1993;
Horie et al., 1996) by a mechanism that might involve
the opening of high conductance Ca21-activated K1

channels (Saito et al., 1996). Indeed, patch-clamping
studies have shown that RANTES increases the open-
state probability of these channels in EoL-1 cells with a
unit conductance of 14 pS. Moreover, channel activation
is blocked by PTX and mimicked by the intracellular
application of GTPgS (in inside-out patches) and by
Ca21 consistent with the interaction of RANTES with
the Gi-coupled receptor CCR3 (Saito et al., 1996).
RANTES also activates PtdIns 3-kinase and promotes
subsequently the phosphorylation of PKB in human eo-
sinophils (Coffer et al., 1998). Although the functional
consequences of these biochemical effects are largely
unexplored they might represent upstream effectors of
the NADPH oxidase (Coffer et al., 1998).

2. CXC Chemokines. Only one CXC chemokine, IL-8,
is known to activate eosinophils. However, whether it
mediates its effects through CXCR1 (IL-8A-R) or CXCR2
(IL-8B-R) is unexplored. Several inconsistencies exist in
the literature with respect to the sensitivity of eosino-
phils to IL-8. Erger and Casale (1995) found that IL-8
promoted eosinophil migration across micropore filters
and through monolayers of HUVECs and A549 cells.
However, those findings contradict the results obtained
in a previous study (Ebisawa et al., 1994). This discrep-
ancy may have resulted from cell priming during the
isolation of eosinophils (Rozell et al., 1996). Indeed, this
explanation would be in agreement with a number of in
vitro studies where IL-8-induced chemotaxis is observed
only after preincubation of eosinophils with IL-5 or GM-
CSF (Warringa et al., 1991, 1992b; Schweizer et al.,
1994; Heath et al., 1997). Interleukin-8-induced chemo-
taxis is associated with an increase in the [Ca21]i (Col-
lins et al., 1993) and actin polymerization (Schweizer et
al., 1994). In vivo studies have established that IL-8
elicits eosinophil migration into the BAL fluid (Lagente
et al., 1995) and skin of guinea pigs (Collins et al., 1993),
although it is uncertain whether this is a direct or indi-
rect response.

F. Complement

Complement is a collective term that refers to a group
of at least 30 proteins including proteolytic proenzymes,
nonenzymatic components from which active enzymes
are derived, and receptors that together form part of an
intricate enzyme system found in plasma (Ember and
Hugli, 1997). Triggering of these systems sets in motion
an amplification cascade that ultimately results in the
formation of the, so-called, terminal attack sequence
that promotes cell lysis and is central to protecting the
host from invading parasites and microbes. In excess of
nine receptors for complement fragments have been
identified and characterized to some extent (see Ross,
1989; Krych et al., 1992; Wetsel, 1995; Ember and Hugli,
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1997). The 74- to 77-amino acid anaphylatoxins (C3a,
C4a, C5a) are known to signal through G protein-cou-
pled receptors and these are described below. The re-
maining complement receptors relevant to eosinophil
biology are discussed in XI. M.

1. Complement 3a Anaphylatoxin. The most abundant
and important complement component is C3, which is
split by a convertase into the anaphylatoxin C3a and a
larger fragment, C3b. Through combination with factor
B and in the presence of a normal plasma enzyme, factor
D, C3b forms C3bBb that can act in a positive feedback
loop to further degrade C3.

The ability of C3a to bind to the surface of human
eosinophils was first demonstrated in 1979 (Glovsky et
al., 1979), and specific saturable binding sites for this
anaphylatoxin were subsequently identified (Goers et
al., 1984; Martin et al., 1997). In 1996, a 482-amino acid
C3a receptor was cloned from a LPS-activated human
neutrophil cDNA library that had 37% nucleotide iden-
tity with the human C5a receptor throughout the coding
region (Ames et al., 1996). The C3a receptor is a member
of the G protein-coupled family of seven transmem-
brane-spanning receptors but has an uncharacteristi-
cally large extracellular loop of over 160 amino acids
between transmembrane domains four and five, and
features two N-linked glycosylation sites. Stable trans-
fection of the rat basophilic leukemia cell line RBL-2H3,
with expression plasmids encoding the C3a receptor,
showed that agonist ligation with the C3a carboxyl-
terminal analog WWGKKYRASKLGLAR resulted in ro-
bust Ca21 mobilization under conditions where C5a was
inactive.

The murine C3a receptor also has been isolated using
a probe derived from the large extracellular loop found
in the human homolog to screen a mouse brain cDNA
library (Tornetta et al., 1997). The receptor is 65% iden-
tical with the 482 amino acids comprising the coding
region of the human C3a receptor and features four
extracellular N-linked glycosylation sites. Consistent
with the results of Ames et al. (1996), stable transfection
of RBL-2H3 cells with expression plasmids encoding the
murine C3a receptor confers sensitivity to C3a but not to
C5a (Tornetta et al., 1997).

C3a is a selective chemoattractant for eosinophils but
not neutrophils (Daffern et al., 1995), activates the
NADPH oxidase (Bach et al., 1990; Elsner et al., 1994),
and promotes the release of EPO, EDN, and ECP from
cytochalasin B-treated cells (Bach et al., 1990; Takafuji
et al., 1994), which can be enhanced by IL-3 and IL-5
(Takafuji et al., 1996). The mechanism of eosinophil
activation by C3a is poorly understood, although it is
known to elevate the [Ca21]i and to promote the produc-
tion of reactive oxygen intermediates by a PTX-sensitive
mechanism (Elsner et al., 1994). Those preliminary data
are consistent with findings in other cells expressing the
C3a receptor. Thus, in U937 cells, C3a increases [Ca21]i
by a PTX-sensitive mechanism and elevates Ins(1,4,5)P3

mass, indicating that the C3a receptor couples to a
PLC-b isoform via Gi or Go (Klos et al., 1992). Identical
results have been obtained with blood- and skin-derived
macrophages and monocytes (Zwirner et al., 1997).

2. Complement 4a Anaphylatoxin. The second compo-
nent of the classical complement pathway, C4, is split by
C1 into the anaphylatoxin C4a and the larger C4b. Con-
troversy surrounds the mechanism by which C4a ana-
phylatoxin elicits its functional effects. Indeed, evidence
is available that C4a interacts with a structurally dis-
tinct C4a receptor (Murakami et al., 1993; Ames et al.,
1997) and that it shares the same receptor as C3a
(Hugli, 1984; Gerard and Gerard, 1994). To the authors’
knowledge, nothing is known of the effect of C4a on
eosinophil function. However, a C3a receptor-mediated
effect of C4a seems unlikely given that it fails to promote
Ca21 mobilization in RBL-2H3 cells stably transfected
with an expression plasmid encoding the murine C3a
receptor (Tornetta et al., 1997).

3. Complement 5a Anaphylatoxin. Activation of the
complement cascade can result in enzymatic cleavage of
complement C5 and the release of a small polypeptide,
C5a, from the remainder of the molecule, C5b, which
remains loosely attached to the catalyst C5 convertase.
One possible source of C5 degradation is provided by the
eosinophil itself when exposed to immune complexes or
SOZ (Ogawa et al., 1981a). Under those conditions, eo-
sinophils can secrete a neutral protease that cleaves C5
to yield an eosinophil chemotactic activity that may well
be C5a (Ogawa et al., 1981a). In 1977, Klebanoff et al.
reported that eosinophils taken from the peritoneum of a
child with eosinophilic gastroenteritis were activated by
C5a, suggesting that receptors for this anaphylatoxin
were expressed. Subsequent studies confirmed the ex-
pression of C5a-binding sites on human eosinophils us-
ing [125I]C5a as a ligand and identified two apparently
distinct populations of saturable sites (Gerard et al.,
1989). One of these is present in relatively low abun-
dance (Bmax 5 15,000–20,000 sites/cell) for which C5a
has high affinity (Kd 5 31 pM). The other constitutes the
majority (.90%) of the total binding capacity (Bmax 5
375,000 sites/cell) although the affinity (Kd 5 100 nM) of
C5a is considerably (.300-fold) lower.

Autoradiography of eosinophils cross-linked to
[125I]C5a and run on SDS-polyacrylamide gels identified
a dominant 60- to 65-kDa receptor complex (Gerard et
al., 1989). However, using the same technique, the C5a
receptors on human neutrophils are of a lower mass
(50–52 kDa), suggesting possible C5a receptor heteroge-
neity (Gerard et al., 1989). The apparent difference be-
tween the eosinophil and neutrophil C5a receptor is
supported by expression studies. A 2.3-kilobase (kb)
cDNA, isolated from a library prepared from the mRNA
of dibutyryl cAMP-differentiated HL60 cells, and ex-
pressed in COS cells encoded a 50- to 52-kDa C5a recep-
tor consistent with the neutrophil variant (Boulay et al.,
1991). It is noteworthy, that binding studies with that
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cloned receptor revealed sites for which C5a had high
(Kd 5 1.7 nM) and low (Kd 5 20–25 nM) affinity (Boulay
et al., 1991) which might point to different conforma-
tions of the same protein.

The amino acid sequence of the C5a receptors cloned
from U937 and HL-60 cells indicates that they adopt a
seven transmembrane-spanning architecture and fea-
ture the necessary motifs for interaction with heterotri-
meric GTP-binding proteins (Boulay et al., 1991; Gerard
and Gerard, 1991). Concordant with those data is the
finding that in human and guinea pig eosinophils, C5a
evokes a rapid and transient, PTX-sensitive increase in
[Ca21]i (Elsner et al., 1995) that is derived almost ex-
clusively from intracellular storage organelles (Elsner et
al., 1994, 1995; Takafuji et al., 1994; Wymann et al.,
1995; Teixeira et al., 1997b). C5a also has been shown to
activate PLD in human normodense eosinophils (Minni-
cozzi et al., 1990) as well as PKB and PtdIns 3-kinase
(Coffer et al., 1998), but the functional consequences of
these effects have not been investigated further.

Ligation of the C5a receptor on eosinophils evokes a
number of functional responses, many of which are
shared with other agonists that act through G protein-
coupled receptors (Table 10). Perhaps the most effective
activity of C5a is its ability to act as a chemoattractant,
although it has been reported to generate lipid media-
tors, oxygen-derived free radicals, and certain cytokines,
promote degranulation, chemotaxis, and adherence, and
to modulate the expression of certain receptors and ad-
hesion molecules (see Table 10). With respect to the
aforementioned functional effects, Ca21 ions are appar-
ently required for the activation of the NADPH oxidase
complex (Elsner et al., 1994, 1995;Wymann et al., 1995)
and for promoting chemotaxis and actin polymerization
(Elsner et al., 1996a).

In vivo, C5a is an effective eosinophil chemoattrac-
tant, although in some species its effects are partially in-
direct through the generation of secondary factors such as
LTB4 (Faccioli et al., 1991; Pettipher et al., 1994).

G. 5-Oxoeicosatetraenoic Acid (ETE),
Hydroxyeicosatetraenoic Acids (HETEs), and
Dihydroxyeicosatetraenoic Acids (diHETEs)

The lipids 5-oxo-ETE (Powell et al., 1995; Schwenk
and Schroder, 1995; O’Flaherty et al., 1996a; Czech et
al., 1997), 5-oxo-15-HETE (Schwenk et al., 1992; Powell
et al., 1995; O’Flaherty et al., 1996a; Czech et al., 1997),
5-HETE (O’Flaherty et al., 1996b), and 8,15-diHETE
(Morita et al., 1990a; Sehmi et al., 1991) are powerful
eosinophil chemoattractants. In addition 5-oxo-ETE, the
most potent of these novel lipid mediators (Powell et al.,
1995; O’Flaherty et al., 1996a), induces degranulation of
GM-CSF-treated eosinophils and enhances, by up to
10,000-fold, the ability of C5a, LTB4, PAF, and fMLP to
effect secretion of stored proteins (O’Flaherty et al.,
1996a). Similarly, 5-oxo-ETE, at substimulatory concen-
trations, potentiates the chemotactic activity of PAF
(Powell et al., 1995). Interestingly, 5-oxo-ETE, but not
5-HETE or 15-HETE, is approximately 100 times more
potent as an eosinophil stimulant than its activity on
neutrophils, suggesting that this compound may act se-
lectively to induce eosinophil margination and activa-
tion (O’Flaherty et al., 1996a).

The cell surface receptor(s) on human eosinophils at
which 5-oxo-ETE and 5-HETE act are not defined but
their ligation results in rapid actin polymerization, in-
tracellular Ca21 mobilization, and the generation of ox-
ygen radicals via a PTX-sensitive mechanism (Czech et
al., 1997). Thus, the receptor for 5-oxo-ETE is likely to be
Gi protein-coupled. 5-Oxo-ETE also enhances the ex-

TABLE 10
Functional effects evoked by C5a anaphylatoxin in eosinophils

Function Species Reference(s)

Induces chemotaxis Human Kay et al. (1973); Klebanoff et al. (1977); Ogawa et al. (1981a);
Fischer and Czarnetzki (1982); Morita et al. (1989b); Rot et al.
(1992); Elsner et al. (1996a,b)

Mobilizes and activates CR3 Human Lundahl et al. (1993)
Activates VLA-4 Human Weber et al. (1996)
Activates the NADPH oxidase Human De Simone et al. (1986b); Elsner et al. (1995); Wymann et al. (1995);

Zeck Kapp et al. (1995); Elsner et al. (1996a,b)
Generates PAF Human Lee et al. (1984)
Generates LTC4 in IL-3 and IL-5-primed cells Human Takafuji et al. (1991)
Releases b-glucuronidase Human Morita et al. (1989b)
Releases EPO Human De Simone et al. (1986b); Kernen et al. (1991); Takafuji et al. (1994);

Zeck Kapp et al. (1995)
Releases ECP in cytochalasin-treated cells Human Zeck Kapp et al. (1995)
Releases MBP Human Koyanagi et al. (1995)
Releases IL-8 in cytochalasin-treated cells Human Takafuji et al. (1991)
Activates the hexose monophosphate shunt Human Klebanoff et al. (1977)
Promotes binding of estrogen Human Klebanoff et al. (1977)
Promotes degradation of thyroid hormone Human Klebanoff et al. (1977)
Releases MIF Human Rossi et al. (1998)
Generates TXB2 Guinea pig Giembycz et al. (1990)
Promotes CD18/lectin-dependent homotypic aggregation Guinea pig Teixeira et al. (1996c)
Promotes adherence to fibronectin (weak) Horse Foster et al. (1997)
Promotes adherence to bronchial epithelial cells Human Burke-Gaffney and Hellewell (1998)
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pression of CD11b and the shedding of L-selectin by a
mechanism that is insensitive to PD 098059, wortman-
nin, and staurosporine (Powell et al., 1999). Some 5-oxo-
ETE-elicited responses might be attributable to its abil-
ity to promote the phosphorylation of ERK-1 and ERK-2
(O’Flaherty et al., 1996b).

In vivo, 5-oxo ETE, given by the intratracheal route to
Brown Norway rats, produces a drammatic (5- to 8-fold)
increase in the number of eosinophils around the airway
wall that is not blocked by LTB4 or PAF antagonists but
is attenuated (; 75%) by monoclonal antibodies directed
against the adhesion molecules very late antigen (VLA)
4 and CD11a (Stamatiou et al., 1998). The magnitide of
this effect is significantly greater than that effected by
LTB4.

H. Sensory Neuropeptides

Sensory neuropeptides represent a host of biologically
active mediators, many of which have a variety of effects
on eosinophil function. The most studied of these pep-
tides include SP, NKA, NKB, calcitonin gene-related
peptide (CGRP), gastrin-releasing peptide, peptide his-
tidine isoleucine, secretin, helodermin, secretoneurin,
cholecystokinin octapeptide, and vasoactive intestinal
peptide (Goetzl and Sreedharan, 1992), and some of
these are discussed below.

1. Substance P. Substance P (SP), NKA, and NKB
comprise the tachykinins and exert many (if not all) of
their effects by acting through at least three structurally
distinct, seven transmembrane-spanning receptors de-
noted neurokinin (NK) 1, NK2, and NK3. In humans, the
NK1, NK2, and NK3 receptors are composed of 407, 398,
and 468 amino acids, respectively, represent distinct
gene products and couple primarily through the Gq/11
family of GTP-binding proteins. Heterogeneity of tachy-
kinin receptors also is seen in cells and tissues from mice
and rats. See Regoli et al. (1994) for additional details.

SP is a undecapeptide which is localized to sensory
nerves that innervate various organs, in particular the
gut and respiratory tract. In addition, eosinophils have
the capacity to synthesize, store, and release large quan-
tities of peptides, including SP and CGRP (Aliakbari et
al., 1987; Weinstock et al., 1988; Weinstock and Blum,
1989,1990b; Weinstock, 1991; Metwali et al., 1994), that
may act in an autocrine fashion. High concentrations
(.1 mM) of SP effectively degranulate eosinophils (mea-
sured as secreted EPO and ECP) but, unlike melittin
(see XI.N), do not promote the biosynthesis of TX, indi-
cating a selective effect on the exocytotic response (Kroe-
gel et al., 1990b; Iwamoto et al., 1993a). SP-induced EPO
release is thought to be mediated by the amino terminus
of the molecule as evinced from the ability of the trun-
cated analog SP1–4, but not SP4–11, to promote secretion
(Kroegel et al., 1990b). Paradoxically, the release of ECP
by SP is mediated by the carboxyl terminus of the pep-
tide since SP1–9 failed to promote degranulation, unlike
the truncated peptides SP4–11 and SP6–11, although the

degree of ECP release (less than 10% of total stored) was
modest (Iwamoto et al., 1993a). The significance of these
discrepant findings is unclear. The ability of SP to effect
eosinophil degranulation is not mimicked by the related
peptide NKA, which could indicate a non-NK receptor-
mediated process. Indeed, it has been proposed that the
effects of SP and other amphiphilic peptides are due to
physicochemical properties of these molecules, possibly
involving the direct interaction and activation of G pro-
teins (Mousli et al., 1990). This is a plausible explana-
tion and particularly relevant to SP-induced EPO re-
lease given that a novel G protein, GE, is believed to
regulate the terminal stages of exocytosis (Gomperts,
1990; Nusse et al., 1990; Cromwell et al., 1991; Gomp-
erts and Cromwell, 1991).

SP also promotes the migration of human eosinophils
at extremely low concentrations (EC50 5 1–10 pM)
(Wiedermann et al., 1993; Dunzendorfer et al., 1998a),
possibly through a PtdIns 3-kinase-dependent mecha-
nism, and potentiates the chemotactic activity of IL-5,
LTB4, and PAF (Numao and Agrawal, 1992; Elshazly et
al., 1996a; Dunzendorfer et al., 1998a,b). Although there
is some discrepancy over whether priming occurs in
eosinophils purified from the blood of nonallergic sub-
jects (see Numao and Agrawal, 1992; Elshazly et al.,
1996a), this action is, again, directed by the carboxyl
terminus of the peptide (Numao and Agrawal, 1992;
Wiedermann et al., 1993). However, in contrast to its
ability to promote directional migration, SP-induced
priming is probably mediated through NK1 receptors
since it is antagonized by FK888 (Elshazly et al., 1996a).
Similar data have been obtained with NKA and chole-
cystokinin octapeptide (Numao and Agrawal, 1992).

Submicromolar concentrations of SP have been re-
ported to up-regulate the expression of receptors for Fce
and Fcg on human eosinophils and to augment antibody-
dependent eosinophil-mediated cytotoxicity toward
erythrocytes (De Simone et al., 1987). With respect to
the NADPH oxidase, human eosinophils in suspension
are insensitive to SP (Dri et al., 1991). However, when
they adhere to polystyrene-based enzyme-linked immu-
nosorbent assay plastic, SP can evoke a respiratory
burst provided very high concentrations (in the high
micromolar range) are used (Dri et al., 1991). Whether
NK receptors are involved in either of these functional
effects is unclear.

In vivo, SP generally promotes tissue eosinophilia.
This has been observed in both guinea pigs, where in-
tradermal administration elicits cutaneous eosinophil
accumulation by a NK1-independent mechanism that
relies on the generation of 5-lipoxygenase products
(D. T. Walsh et al., 1995), and in BALB/c mice which is
dependent upon the secondary formation of LTB4
(Iwamoto et al., 1993b). Similar data have been reported
in human studies. Fajac et al. (1995) found that SP,
nebulized into each nostril of seven patients with sea-
sonal allergic rhinitis 24 h after nasal provocation,
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markedly (.10-fold) enhanced the already numerous
number of eosinophils present in the nasal lavage fluid.
That effect was associated with increased nasal obstruc-
tion and leakage of plasma proteins from the vascula-
ture. Since SP is released after nasal allergen challenge,
it is possible that this peptide plays an important role in
chronic eosinophilic inflammation of the nasal mucosa
in symptomatic allergic rhinitis. However, the ability of
SP to activate eosinophils in the lung, gut, or nose may
have little physiological or pathophysiological signifi-
cance given that the concentration released from sen-
sory nerves and proinflammatory cells would have to be
in the micromolar range for most functional effects to be
manifest.

2. CGRP. Four distinct receptors for the CGRP family
of proteins (which include amylin, calcitonin, and ad-
renomedullin) have been partially classified based on
rank orders of agonist potencies and molecular cloning.
Each receptor is G protein-coupled, probably through Gs,
to adenylyl cyclase, although this is probably not the
only effector.

Controversy exists regarding the effect of CGRP on
eosinophil function. Numao and Agrawal (1992) re-
ported that CGRP primed human eosinophils to chemo-
tactic agents but had no direct effect itself. However,
most other investigators have provided results to the
contrary. Thus, in vitro CGRP has been shown to be an
extremely potent chemotactic agent for human eosino-
phils with an EC50 of approximately 1 pM (Dunzendor-
fer et al. 1998a). Similarly, rat CGRP is chemotactic for
guinea pig eosinophils (Manley and Haynes 1989). In-
triguingly, the amino acid sequence VGSE, which rep-
resents ratCGRP32–35, is identical with ECF-A reported
by Goetzl and Austen (1975) and is more effective than
CGRP in the chemotaxis assay (Manley and Haynes,
1989). Since CGRP is a substrate for endopeptidase
24.11, it could be converted into ECF-A in vivo. Thus, a
novel function of endopeptidase 24.11 may be to enhance
rather than terminate the biological activity of CGRP
(Davies et al., 1992).

The chemotactic activity of CGRP is somewhat sur-
prising given that receptors for GCRP and related family
members are believed to couple primarily to adenylyl
cyclase via Gs. However, the possibility exists that
CGRP could promote chemotaxis by activating an alter-
native Gs-regulated protein such as an ion channel. Al-
ternatively, coupling of CGRP receptors through other G
proteins could be inferred from the report that human
eosinophils chemotaxis is abolished by wortmannin at a
concentration that selectively inhibits PtdIns 3-kinase
(Dunzendorfer et al., 1998a). These possibilities are sup-
ported by the general observation that cAMP-elevating
agents suppress eosinophil chemotaxis (see XIV.A.5,
XIV.C, and XIV.D for details).

Little is known of the effects of CGRP on leukocyte
accumulation in vivo. Bellibas (1996) reported that rats
given nebulized CGRP developed a pulmonary eosino-

philia. Similarly, injection of CGRP into human skin
causes a long-lasting flare associated with eosinophil
infiltration (Piotrowski and Foreman, 1986). Whether
CGRP acts directly or indirectly has not been explored.

3. Secretoneurin. Dunzendorfer et al. (1998a,b) have
reported that secretoneurin, a novel 33-amino acid pep-
tide derived from secretogranin II (Kirchmair et al.,
1993) that is released from sensory afferent C-fibers by
capsaicin (Kirchmair et al., 1994), is an effective che-
moattractant for human eosinophils with a potency 10 to
50 times less than SP, RANTES, and IL-8. Preliminary
studies designed to evaluate the signaling pathway(s)
utilized by secretoneurin established that chemotaxis
was abolished by the PtdIns 3-kinase inhibitor wort-
mannin, but not by tryphostin-23, whereas the same
response evoked by SP was inhibited by both pharma-
cological agents (Dunzendorfer et al., 1998a,b). Thus, it
would appear that secretoneurin-induced human eosin-
ophil chemotaxis is mediated, in part, by mechanisms
distinct from those recruited by SP. Studies with the
phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methyl-
xanthine (IBMX), which significantly attenuated secr-
etoneurin-, but not SP-, induced chemotaxis support this
idea (Dunzendorfer et al., 1998a,b).

4. Vasoactive Intestinal Peptide. In humans and rats,
three receptors (PAC, VPAC1, and VPAC2) unequivo-
cally have been defined at which vasoactive intestinal
peptide (VIP) is an agonist. Molecular genetics has es-
tablished that each receptor is encoded by a distinct
gene that activates effector elements by coupling exclu-
sively through Gs. See Harmar et al. (1998) for addi-
tional details.

Eosinophils have the capacity to synthesize, store, and
release large quantities of a variety of peptides including
VIP (Aliakbari et al., 1987; Weinstock and Blum, 1990a;
Weinstock, 1991; Metwali et al., 1994) that may act in an
autocrine fashion to modulate cell function. A prelimi-
nary report has described the specific binding of 125I-
labeled VIP to intact eosinophils harvested from the
peritoneal cavity of guinea pigs (Sakakibara et al.,
1990). This effect is rapid, time-dependent, and satura-
ble and can be inhibited by unlabeled VIP and the re-
lated peptide helodermin (Sakakibara et al., 1990). Scat-
chard analyses of 125I-labeled VIP-binding isotherms
indicates a single class of low-affinity (Kd 5 140 nM),
high-capacity (744,000) sites/cell (Sakakibara et al.,
1990). In the presence of the nonselective PDE inhibitor
IBMX, neither VIP nor helodermin increased measur-
ably the cAMP content of guinea pig eosinophils (Sakak-
ibara et al., 1990), suggesting that if the VIP-binding
sites represent bona fide receptors they are uncoupled
from, or do not couple positively to, adenylyl cyclase.
Moreover, exogenous VIP does not inhibit the production
of superoxide anions from phorbol ester-stimulated eo-
sinophils (Sakakibara et al., 1990). However, that neg-
ative result is not entirely unexpected because cyclic
nucleotide-elevating drugs generally do not inhibit func-
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tional responses in eosinophils effected by phorbol di-
esters or calcium ionophores (Dent, 1991). The knowl-
edge that cAMP suppresses receptor-mediated
respiratory burst activity in eosinophils implies that the
substrate(s) phosphorylated by PKA is upstream of
PKC. At the present time, therefore, the nature of the
specific binding sites labeled by 125I-labeled VIP in
guinea pig eosinophils is unclear.

In contrast, VIP is a potent chemokinetic agent for
human isolated eosinophils with activity in the femto-
molar range. This effect appears to be receptor mediated
for it is abolished by [L17-G29,K30]VIP, a VIP antagonist.
Moreover, secretin mimicks the effect of VIP, whereas
helodermin is relatively inactive, suggesting that
VPAC1 receptors mediate chemokinesis (Dunzendorfer
et al., 1998a). Interestingly, the nonselective PDE inhib-
itor IBMX, prevented VIP- and secretin-induced chemo-
kinesis (consistent with the inhibitory effect of cAMP on
eosinophil locomotion) which tempts speculation that
the receptor through which VIP acts does not couple
through Gs (Dunzendorfer et al., 1998a). In this respect,
a low concentration (10 nM) of wortmannin abolished
VIP- and secretin-induced chemokinesis, implicating Pt-
dIns 3-kinase in eosinophil locomotion (Dunzendorfer et
al., 1998a).

I. Bradykinin

Two subtypes (B1 and B2) of the bradykinin receptor
have been defined by pharmacological and molecular
techniques and additional evidence for a B3 receptor has
been provided from antagonist studies (Farmer, 1995).
In humans, the B1 and B2 receptors are composed of 353
and 364 amino acids, respectively, represent distinct
gene products and couple primarily through the Gq/11
family of GTP-binding proteins. See Hall (1997) for ad-
ditional details.

Bradykinin has no known direct effect on eosinophil
function although, in vivo, it promotes localized eosino-
philia in several species, including the guinea pig
(Fechter et al., 1986; Farmer et al., 1992) and rat (Pas-
quale et al., 1991; Bowden et al., 1994; Pires et al., 1994;
Ferreira et al., 1996). Bradykinin B2 receptors are im-
plicated in the cavine model since eosinophil accumula-
tion is suppressed by the B2-selective antagonists NPC
567 and NPC 16731. In rats, bradykinin acts, in large
part, by effecting the generation of lipoxygenase prod-
ucts (Pasquale et al., 1991).

J. Endothelin

Two receptors (ETA and ETB) for the endothelins have
been classified in a number of species that couple to
intracellular effectors through the Gq/G11 family of GTP-
binding proteins. In humans, the ETA and ETB receptors
are composed of 427 and 442 amino acids, respectively,
and are distinct gene products. Pharmacological evi-
dence is available for ETB receptor heterogeneity but

this is yet to be confirmed at the molecular level. See
Masaki et al. (1994) for additional details.

Fujitani et al. (1997) have reported that the appear-
ance of eosinophils in the BAL fluid of allergen-chal-
lenged, sensitized BALB/c mice was significantly sup-
pressed by BQ 123 (ETA antagonist), SB 209670 (ETA/
ETB antagonists), and a neutralizing anti-endothelin
antibody. The additional finding that the ETB antago-
nist BQ-788 was inactive suggests that endogenously
released endothelin promotes pulmonary eosinophilia
through an action at ETA receptors. It is not known
whether eosinophils express functional endothelin re-
ceptors but the mechanism of action of BQ 123 and SB
209670 in the murine model probably resides in their
ability to release interferon g (IFNg) from Th1 T lym-
phocytes (Fujitani et al., 1997). Indeed, the i.v. admin-
istration of endothelin to guinea pigs does not cause
pulmonary leukocyte accumulation (Macquin-Mavier et
al., 1989).

K. Adenosine

Currently, four receptors for adenosine have been un-
equivocally defined in human tissues and are denoted
A1, A2A, A2B, and A3. Each, so-called, purinoceptor is a
member of the seven transmembrane-spanning family of
receptors and couples to multiple effectors through Gi,
Go, and Gs. Thus, adenosine can act as an excitatory and
inhibitory ligand depending upon the receptor subtype
expressed by the cell or tissue of interest. In humans,
the A1, A2A, A2B, and A3 purinoceptor are composed of
326, 412, 332, and 318 amino acids, respectively, and
represent distinct gene products. Adenosine receptor
multiplicity also is found in cells and tissues from mice
and rats. See Fredholm et al. (1994) for detailed descrip-
tion of classification.

Human and guinea pig eosinophils generate and re-
lease adenosine spontaneously in biologically active
quantities. This phenomenon is seen in cells pretreated
with adenosine deaminase and the adenosine receptor
antagonist 8-phenyltheophylline (which does not inhibit
PDE). Both of these pharmacological interventions aug-
ment the generation of superoxide anions in response to
SOZ, indicating that adenosine acts in an autocrine
manner to suppress, tonically, the activity of the
NADPH oxidase (Yukawa et al., 1989a). Pharmacologi-
cal experiments designed to determine the adenosine
receptor coupled to the inhibition of the NADPH oxidase
implicate the A2 subtype since 59-N-ethyl-carboximide
adenosine has a greater inhibitory effect than R-N-phe-
nyl-isopropyl adenosine (Yukawa et al., 1989a). Further-
more, adenosine has been shown to increase the [Ca21]i
in fura-2/AM-loaded guinea pig eosinophils and to sig-
nificantly enhance PAF-induced superoxide anion gen-
eration and Ca21 mobilization (Walker, 1996). The re-
ceptor that mediates these latter effects is not defined
but is unlikely to be either of the A2 purinoceptor sub-
types since they couple predominantly through Gs.
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In situ hybridization and polymerase chain reaction
(PCR) studies have localized transcripts of the adeno-
sine A3 receptor to human eosinophils from normal and
atopic donors (Kohno et al., 1996; Walker et al., 1997).
More detailed experiments have established that eosin-
ophil membranes express a homogeneous population of
noninteracting, high-affinity (Kd 5 3.2 nM) binding sites
for 25I-labeled N6-(4-aminobenzyl)-adenosine-59-N-
methyluronamide, an adenosine A3 receptor agonist,
with a Bmax of 1.3 pmol/mg protein (Kohno et al., 1996).
Intriguingly, the density of adenosine A3 receptor tran-
scripts is higher in lung tissue taken from subjects with
airway inflammation than from normal donors (Walker
et al., 1997), although whether this is associated with an
increase (or decrease) in functional receptors is cur-
rently unknown. In addition to suppressing the activa-
tion of the NADPH oxidase via A2 receptors (see above),
adenosine exerts effects in eosinophils through agonism
of the adenosine A3 receptor that are considered to be
both proinflammatory and anti-inflammatory. Thus,
PAF-, RANTES-, and LTB4-induced chemotaxis of hu-
man eosinophils is prevented by 3-(3-iodo-4-aminoben-
zyl)-8-(4-oxyacetate)phenyl-1-propyxanthine, a selective
antagonist at A3 receptors (Knight et al., 1997; Walker
et al., 1997). In contrast, the highly potent and selective
A3 agonist CI-IB-MECA mobilizes Ca21 from both intra-
cellular stores and from the extracellular compartment,
suggesting that the A3 purinoceptor can couple to a PLC
(Kohno et al., 1996).

L. Histamine

Histamine (2-(4-imidazole)ethylamine) can act at
three distinct receptors denoted H1, H2, and H3. Classi-
cal pharmacology, allied with molecular techniques, has
identified the H1 and H2 receptor in humans, mice, and
rats and has established that they belong to the seven
transmembrane-spanning family of receptors. The hu-
man H1 and H2 receptors are composed of 487 and 359
amino acids, respectively, and are the products of differ-
ent genes. Although the H1 receptor couples primarily
through a PTX-insensitive G protein, probably of the
Gq/11 class, the H2 receptor is linked to effector enzymes
via Gs. Thus, like adenosine, histamine can activate or
inhibit depending upon the receptor subtype expressed
by the cell or tissue of interest. The H3 receptor has not
yet been cloned but has pharmacology distinct from the
other histamine receptors. The effector molecules in-
volved in H3 receptor signaling are unknown, although
radioligand-binding experiments imply a possible link to
a G protein. See Hill et al. (1997) for detailed review.

Pharmacological evidence points to the expression of
H1, H2, and H3 histamine receptors on human eosino-
phils and much of this is derived from experiments as-
sessing locomotion in vitro. Although many studies have
examined the chemotactic potential of histamine in sev-
eral species (Clark et al., 1975, 1977; Bryant et al., 1977;
Jones and Kay, 1977; Wadee et al., 1980; McEwen et al.,

1990; Foster and Cunningham, 1998), much of those
data are contradictory with respect to the receptor sub-
type(s) involved. Thus, in the late 1970s, the chemotactic
activity of histamine on guinea pig eosinophils was at-
tributable to an interaction at receptors of the H2 sub-
type (Jones and Kay, 1977). In contrast, similar experi-
ments performed at the same time with human cells
failed to corroborate that finding and, instead, proposed
the existence of a novel receptor based on the finding
that histamine-induced chemotaxis was not blocked by
H1 or H2 antagonists (Clark et al., 1975, 1977). Further
discrepancy is provided by the results of additional stud-
ies where histamine was shown to augment human eo-
sinophil chemokinesis (random migration), effected by
endotoxin-activated serum, through a pyrilamine (H1)-
sensitive receptor (Clark et al., 1977; Wadee et al.,
1980), whereas, in the same experimental setup, direc-
tional motility (chemokinesis) was mediated through H2
receptors (Clark et al., 1977; Wadee et al., 1980). In
equine eosinophils, histamine promotes migration and
adherence to serum- and fibronectin-coated plastic
solely through the histamine H1 subtype (Foster and
Cunningham, 1998). Thus, although species differences
should not be discounted, the histamine receptor sub-
type(s) that promotes eosinophil locomotion still is
equivoval.

Histamine H3 receptors were identified on human eo-
sinophils by Raible et al. in the early 1990s. Using Ca21

mobilization as an index of activation, the affinity of the
selective H3 antagonists burimamide, thioperamide, and
impromidine were similar to those calculated for the H3
receptors in the central nervous system (Raible et al.,
1992, 1994). However, R-a-methylhistamine and N-a
methylhistamine (H3-selective agonists) were less active
than histamine itself which led Raible et al. (1994) to
suggest that the eosinophil H3 receptor is different from
those expressed in other tissues. However, low receptor
expression or poor receptor-effector-coupling efficiency
equally could explain this apparently anomalous result.

With the possible exception of motility, the functional
effects of histamine in eosinophils are surprisingly little
studied. Reports that histamine evokes superoxide an-
ion generation from guinea pig and human eosinophils
(Pincus et al., 1982) and enhances C3b rosette formation
(Anwar and Kay, 1980) by a H1 receptor-mediated mech-
anism have been suggested but not corroborated.

One of the first investigations to address the in vivo
effects of histamine was published by Vegad and Lan-
caster (1972) who reported that local application pro-
duced cutaneous eosinophilia in sheep. That finding has
since been confirmed in guinea pigs (Woodward et al.,
1985) and in humans, where the chemoattraction was
greater in atopic subjects when compared to normal
individuals (Bryant and Kay, 1977). A role for histamine
in eosinophil recruitment is not restricted to the skin.
Histamine promotes the emigration of eosinophils to the
conjunctiva of guinea pigs (Woodward et al., 1986;
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Spada et al., 1986) and also is implicated in allergen-
induced pulmonary eosinophilia in sensitized dogs
(Johnson et al., 1992). In a guinea pig model of cutane-
ous and conjunctival eosinophilia, pyrilamine and cime-
tidine administered concurrently is necessary to signif-
icantly blunt eosinophil infiltration, indicating that
histamine H1 and H2 receptors are involved (Woodward
et al., 1985, 1986). However, eosinophil trafficking was
not abolished by that treatment, tempting speculation
that H3 receptors also play a role (Woodward et al.,
1986). Paradoxically, local application of histamine to
unroofed heat-suction blisters of ragweed-sensitive sub-
jects inhibited allergen-induced cutaneous eosinophilia
(Ting et al., 1981). An important role for inhibitory H2
receptors is, therefore, proposed.

M. Prostanoids

Elegant studies performed since the mid-1970s have
provided pharmacological evidence for five main classes
of receptor for the naturally occurring prostanoid ago-
nists (reviewed in Coleman et al., 1994). These receptors
have been given the prefix DP-, EP-, FP-, IP-, and TP-
and belong to the G protein-coupled receptor superfam-
ily. Because of the lack of selective antagonists, this
taxonomy was formulated predominantly from rank or-
ders of agonist potencies obtained in various pharmaco-
logical preparations where each prostanoid is at least
one order of magnitude more potent than the others at a
specific prostanoid receptor. Molecular biological tech-
niques have recently confirmed this pharmacological
classification with the cloning and expression of cDNAs
for representatives of the five prostanoid receptors in a
number of species including humans (Hirata et al., 1991;
Abramovitz et al., 1994; Boie et al., 1994,1995; Kunapuli
et al., 1994; Regan et al., 1994a,b; Yang et al., 1994).

In vitro studies suggest that eosinophils might ex-
press excitatory DP receptors based on the finding that
prostaglandin (PG) D2 (but not PGF2a or TX mimetics)
enhances zymosan-activated serum-induced eosinophil
migration (Butchers and Vardey, 1990). This possibility
is supported by an earlier description of the chemoki-
netic activity of PGD2 (Goetzl et al., 1979) and its ability
to promote Ca21 mobilization in fura-2-loaded human
eosinophils (Raible et al., 1992). In vivo, PGD2 promotes
eosinopenia and the accumulation of eosinophils in the
airways of dogs (Marsden et al., 1984; Emery et al.,
1989) in a manner that is attenuated by the nonselective
prostanoid receptor antagonist SK&F 88046. Thus, it
seems likely that the chemokinetic action of PGD2 re-
sults from a direct action on the eosinophil (Emery et al.,
1989). Furthermore, PGD2 (acting through TP receptors
on the airways smooth muscle) evokes potent broncho-
constriction in humans (Beasley et al., 1989; Johnston et
al., 1992). This effect raises important clinical consider-
ations given that PGD2 is present in the BAL fluid of
mild asthmatic subjects and is released into the lungs

following acute allergen provocation (Murray et al.,
1986; Liu et al., 1990).

Evidence derived from pharmacological studies sug-
gests that eosinophils express a population of prostanoid
receptors that, when activated, suppress several indices
of activation. Butchers and Vardey (1990) reported that
fMLP-induced ECP release from a mixed population of
human granulocytes was suppressed by PGD2, PGE2,
and PGF2a with a rank order of potency in good agree-
ment with that found with other cells and tissues that
express DP receptors such as human platelets (Keery
and Lumley, 1988). Similarly, the synthetic PGD2 ago-
nist BW 245C was more potent than the natural ligand
at blocking degranulation (Butchers and Vardey, 1990).
In complete agreement with those data, Sturton and
Norman (1991) noted that PGD2 was the most effective
natural prostaglandin at preventing fMLP-induced re-
spiratory burst (assessed as luminol-enhanced chemilu-
minescence) in human eosinophils. Thus, it appears that
DP receptors can mediate both excitatory and inhibitory
effects in human eosinophils that might reflect DP re-
ceptor heterogeneity (see Fernandes and Crankshaw,
1995).

PGE2 inhibits, albeit modestly (20–30%), PAF-in-
duced CD11b expression and the shedding of L-selectin
on human eosinophils (Berends et al., 1997), implying
that their interaction with the appropriate counter li-
gands on vascular endothelial cells would be reduced. A
similar result was documented for PGE1 which attenu-
ated the up-regulation by PAF and C5a of the b2 integrin
CD18 in guinea pig eosinophils (Teixeira et al., 1996a).
This action would temper the directional migration of
eosinophils in response to chemoattractants and might
attenuate eosinophil-driven inflammatory responses.
The identity of the prostanoid receptor subtype at which
E-series prostaglandins suppress adhesion molecule ex-
pression has not been determined, although it is curious
that the PDE4 inhibitor rolipram is inactive, which
tempts speculation that EP receptors coupled positively
to adenylyl cyclase are not involved. Nevertheless, eo-
sinophils may express inhibitory prostanoid receptors of
the EP2 subtype (Butchers and Vardey, 1990; Teixeira et
al., 1997a). In human cells, this is suggested by the
finding that PGE2 increases the cAMP content (indica-
tive of agonism at EP2 or EP4 receptors (Coleman et al.,
1994)), and that misoprostol (EP2-/EP3-selective ago-
nist), but not sulprostone (EP1-/EP3-selective agonist),
inhibits fMLP-induced ECP release. In guinea pig eosin-
ophils, pharmacological evidence based on the rank or-
der of agonist potency (PGE2 . PGE1 . 11-deoxy-PGE1
. misoprostol . butaprost . AH 13205) also implicates
EP2 receptors in the inhibition of PAF-induced homo-
typic aggregation (Teixeira et al., 1997a). In those stud-
ies, the selective EP2 agonists butaprost and AH 13205
were uniformly weak, which might question the classi-
fication of the inhibitory eosinophil EP receptor as an
EP2 subtype. However, comparable results have been
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described in rat neutrophils (Wise and Jones, 1994) and
human monocytes (Meja et al., 1997) that express EP2-
like receptors. Thus, given the high selectivity of butap-
rost for EP2 receptors, an alternative possibility is that
guinea pig eosinophils express a modest number of EP2-
binding sites at which butaprost and AH 13205 have low
efficacy. Regardless of their precise identity, the inhibi-
tory EP receptors are apparently coupled positively to
adenylyl cyclase since inhibition of PKA reduced the
ability of PGE1, 11-deoxy-PGE1, and AH 13205 to sup-
press PAF-induced aggregation (Teixeira et al., 1996a,
1997a).

In vivo, E-series prostaglandins inhibit cutaneous eo-
sinophilia in guinea pigs in response to PAF and com-
pound 48/80 and after passive cutaneous anaphylaxis
under conditions where local edema formation is en-
hanced (Teixeira et al., 1993). Prostaglandins exert sev-
eral direct effects on eosinophils that could contribute to
their ability to reduce eosinophil number to sites of an
inflammatory insult (see above). However, the accumu-
lation of neutrophils in the skin of guinea pigs is en-
hanced by PGE1 and PGE2, whereas in vitro neutrophil
activation is generally attenuated (Teixeira et al.,
1996a, 1997a; Berends et al., 1997). Thus, E-series pros-
taglandins might affect eosinophil emigration indirectly.
However, studies with the long-acting b2 adrenoceptor
agonist salmeterol (Teixeira and Hellewell, 1997a) has
provided persuasive evidence that agents that elevate
cAMP can prevent eosinophil locomotion; thus, the
mechanism of action of E-series prostaglandins in vivo
remains to be elucidated.

Neither functional nor radioligand-binding experi-
ments have provided any evidence for IP, FP, or TP
receptors on human or guinea pig eosinophils (Butchers
and Vardey, 1990; Giembycz et al., 1990; Sturton and
Norman, 1991). As described in XII. C.2, the major cy-
clooxygenase products generated by PAF- and LTB4–
stimulated eosinophils are TX and PGE2 (Giembycz et
al., 1990; Perkins et al., 1995). However, exposure of
guinea pig eosinophils to the cyclooxygenase inhibitor
flurbiprofen, at a concentration that abolished PGE2
generation, did not affect LTB4- or PAF-induced func-
tional responses (Giembycz et al., 1990; Rabe et al.,
1992), indicating that this prostanoid is not generated in
an amount sufficient to act in an autocrine manner.

N. a Adrenoceptors

Although formal identification (by radioligand bind-
ing or pharmacological means) of cell surface a adreno-
ceptors is lacking, Masuyama and Ishikawa (1985) sug-
gested that they might be expressed on guinea pig
eosinophils based on the finding that noradrenaline (a-
selective) inhibited eosinophil phagocytosis and free rad-
ical production under conditions where isoprenaline (b-
selective) was less active. However, in the absence of
data obtained with selective agonists and antagonists,

the expression of a1 or a2 adrenoceptors (or subtypes
thereof) on eosinophils is equivocal.

O. b Adrenoceptors

In the context of asthma, b2 adrenoceptor agonist are,
without exception, the most effective bronchodilators
available clinically and can reverse tone by acting on
airways smooth muscle directly, irrespective of the caus-
ative spasmogen. A far more contentious issue is
whether they exert an anti-inflammatory influence in
vivo. In the following sections the in vitro and in vivo
actions of short- and long-acting b adrenoceptor agonists
on eosinophil function are reviewed and their role in the
treatment of inflammation discussed.

1. Receptors. Three distinct b adrenoceptor subtypes
(b1, b2, and b3) have been unequivocally classified. Each
subtype is a member of the seven transmembrane-span-
ning family of receptors and is the product of a different
gene. In humans, the b1, b2, and b3 adrenoceptor are
composed of 477, 413, and 408 amino acids, respectively,
and interact predominantly, but not exclusively, with
Gs-linked effectors (see Bylund et al., 1994 for details).
Pharmacological evidence also is available for b4 adre-
noceptors (Molenaar et al., 1997).

Radioligand-binding studies using the b adrenoceptor
antagonist 125I-labeled pindolol have identified a homog-
enous population of very high-affinity (Kd ; 25 pM)
binding sites on intact eosinophils harvested from hu-
man blood (Bmax 5 4333 sites/cell) and from the perito-
neal cavity of guinea pigs (Bmax 5 7166 sites/cell) that
have the characteristics of the b2 adrenoceptor subtype
(Yukawa et al., 1990). mRNA for the b2 but not b1
adrenoceptor subtype also has been identified in the
same cells (Peters et al., 1993). Those results are con-
cordant with the ability of isoprenaline and salbutamol
to elevate the cAMP content and to activate PKA (Kita et
al., 1991b; Souness et al., 1991; Dent et al., 1994; Munoz
et al., 1995), and confirm that the b adrenoceptors on
eosinophils can couple positively to adenylyl cyclase.
Compared to isoprenaline, the selective b2 adrenoceptor
agonist salbutamol is less potent and is a partial agonist
(a 5 0.8) at increasing cAMP in eosinophils (Yukawa et
al., 1990), whereas the long-acting b2 agonist salmeterol
is inactive (Rabe et al., 1993; Munoz et al., 1995). The
finding that the affinity of atenolol and ICI 118,551,
antagonists of b1 and b2 adrenoceptors, respectively, for
inhibiting isoprenaline-induced cAMP accumulation in
eosinophils is essentially the same as their Ki values
calculated from binding studies (Yukawa et al., 1990)
indicates that the sites labeled by 125I-labeled pindolol
and the receptors subserving cAMP accumulation are
identical (i.e., b2 adrenoceptors).

In vitro, b2 adrenoceptor agonists suppress several
indices of eosinophil activation (detailed below) provided
the preincubation time is not too long (Yukawa et al.,
1990). However, prolonged exposure to b adrenoceptor
agonists promotes rapidly a state of tolerance and, in
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one study, salbutamol, salmeterol, and isoprenaline
were reported to enhance eosinophil activation (Nielson
and Hadjokas, 1998). Desensitization, noted also in
other leukocytes (e.g., Tecoma et al., 1986), is probably
due to uncoupling of b2 adrenoceptors from adenylyl
cyclase and/or enhanced metabolism of the cAMP
formed following activation of the b adrenoceptor since
receptor down-regulation normally is not observed.
These biochemical changes are attributable to several
mechanisms that are not mutually exclusive including
the activation of PKA (Bouvier et al., 1989; Lohse, 1993;
Giembycz, 1996), induction of PDE4 (Torphy et al., 1995;
Giembycz, 1996; Seybold et al., 1998), and down-regula-
tion of the activity and amount of the 45- and 52-kDa
splice variants of Gsa (Finney et al., 1998). Desensitiza-
tion through the activation of one or more members of
the G protein receptor-coupled kinase (GRK) family
(Bouvier et al., 1989; Lohse et al., 1990; Chuang et al.,
1992; McGraw and Liggett, 1997), particularly GRK2
(formerly b adrenoceptor kinase 1), also is likely. Indeed,
high levels of GRK-2 have been identified in the cytosol
of human eosinophils (Onorato et al., 1995). The b2
adrenoceptor also is a substrate for GRKs 1, 3, 5, and 6
(Chuang et al., 1996) which could further compromise
signaling.

2. Activation of the NADPH Oxidase. In human and
guinea pig eosinophils, b2 adrenoceptor agonists effec-
tively suppress the activation of the NADPH oxidase
(Rabe et al., 1993; Dent et al., 1994; Hadjokas et al.,
1995; Ezeamuzie and Al-Hage, 1998). In the latter spe-
cies this effect may not be mediated by receptors of the
b1 or b2 subtype since the affinities of propranolol (pA2
5 7.2), atenolol (pA2 . 5), and ICI 118,551 (pA2 ; 7.1) in
antagonizing LTB4-induced H2O2 generation (a reliable
measure of the respiratory burst) are considerably less
than would be predicted from an interaction with clas-
sical b1 or b2 adrenoceptors (Rabe et al., 1993). More-
over, the long-acting b2 adrenoceptor agonist salmeterol
is inactive at suppressing oxidant production in re-
sponse to LTB4 and actually behaves as an antagonist at
this “atypical” receptor subtype with reasonable affinity
(pA2 5 5.9) (Rabe et al., 1993). This finding also provides
additional evidence for atypical b adrenoceptors on eo-
sinophils. Indeed, logic dictates that if b2 adrenoceptors
were involved, salmeterol should inhibit H2O2 genera-
tion since it has essentially the same efficacy as salbu-
tamol (Dougall et al., 1991).

The concentration-response curve that describes b ad-
renoceptor-mediated cAMP accumulation in eosinophils
lies one to two orders of magnitude to the left of that
which describes the inhibition of H2O2 generation (EC50
values 5 50 nM and 10 mM, respectively) (Yukawa et al.,
1990; Rabe et al., 1993). One interpretation of those
findings is that the atypical b receptors on guinea pig
eosinophils suppress oxidative metabolism by coupling
to signal transduction elements distinct from the adeny-
lyl cyclase/cAMP/PKA cascade. The failure of the PDE

inhibitors rolipram and zardaverine to potentiate the
inhibitory action of salbutamol on SOZ-induced super-
oxide anion production from human eosinophils is con-
sistent with this proposal (Dent et al., 1994).

In human eosinophils, the acute effects of b2 adreno-
ceptor agonists on NADPH oxidase activity differ from
what is seen with guinea pig cells (Ezeamuzie and Al-
Hage, 1998). Thus, salmeterol, but not salbutamol, ef-
fectively inhibits IL-5-induced superoxide anion gener-
ation from human eosinophils with an EC50 in the low
micromolar range. It was suggested that the selective
inhibitory effect is related to the nature of the activating
stimulus since both salbutamol and salmeterol sup-
pressed oxidant production when the NADPH oxidase
was activated by PAF (Ezeamuzie and Al-Hage, 1998).
Significantly, ICI 118,551 failed to antagonize the inhib-
itory effect of salmeterol, which points to a mechanism of
action independent of b2 adrenoceptor activation
(Ezeamuzie and Al-Hage, 1998).

Although inhaled b2 adrenoceptor agonists are the
most effective bronchodilators known, they may be as-
sociated with an increase in asthma mortality and mor-
bidity when high doses are taken chronically (see Sears
and Taylor, 1994). One theory that could explain this
paradox is that prolonged use of sympathomimetic bron-
chodilators compromises the anti-inflammatory effect of
glucocorticosteroids (Peters et al., 1995). Evidence to
support this proposal derives from studies where chronic
exposure of human eosinophils to salbutamol, salmet-
erol, and isoprenaline, at therapeutically relevant con-
centrations, prevented the ability of dexamethasone to
suppress fMLP-induced superoxide anion generation
(Nielson and Hadjokas, 1998). That effect was antago-
nized by propranolol, indicating that b adrenoceptors
were involved, and time-dependent such that a 24-h
exposure rendered the steroid inactive (Nielson and
Hadjokas, 1998). Of potential significance is that the
negative functional interaction between b2 adrenoceptor
agonists and steroids in eosinophils is supported by
studies performed at the molecular level in a number of
other cells and tissues. In particular, Peters et al. (1995)
reported that salbutamol and fenoterol when added con-
currently with dexamethasone reduced the binding of
the activated glucocorticoid (GR) to DNA without alter-
ing receptor number or the affinity of dexamethasone.
The activation of the transcription factor cAMP-re-
sponse element binding protein (CREB) and its associ-
ated coactivator, CREB-binding protein (CBP) by cAMP
is believed to underlie this effect because forskolin also
reduced the binding of the activated GR to DNA (Peters
et al., 1995). However, the extent to which this molecu-
lar mechanism accounts for the inability of dexametha-
sone to inhibit the activity of the NADPH oxidase in b
adrenoceptor agonist-treated eosinophils is unknown.

3. Degranulation. Another in vitro functional response
where b adrenoceptor agonists demonstrate an inhibi-
tory effect is on degranulation. In human normodense
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eosinophils, isoprenaline, salbutamol, and eformoterol
inhibit (albeit weakly) the secretion of products (ECP,
EDN, or EPO) stored within the specific granules in
response to fMLP (Munoz et al., 1995; Ezeamuzie and
Al-Hage, 1998), PAF (Eda et al., 1993a), and Ig (IgG and
secretory IgA)-coated Sepharose beads (Kita et al.,
1991b). Curiously, salmeterol is inactive at blocking
fMLP-induced EPO release (Munoz et al., 1995;
Ezeamuzie and Al-Hage, 1998) and actually blocks the
inhibitory effect of salbutamol under the same experi-
mental conditions, although the nature of the antago-
nism was not elucidated (Munoz et al., 1995). Those
findings confirm previous observations with guinea pig
eosinophils (Rabe et al., 1993) that salmeterol can act as
a competitive b adrenoceptor antagonist.

Intriguingly, IgG-evoked EDN release is significantly
more sensitive to b adrenoceptor agonists, and the inhi-
bition produced greater, than the same response elicited
by secretory IgA (Kita et al., 1991b). It is possible that
functional antagonism explains this discrepancy since
secretory IgA is a more effective stimulus of degranula-
tion than is IgG (Kita et al., 1991b). Alternatively, the
finding that Fc receptors for IgA and IgG couple to
different G proteins might alter the sensitivity of the
secretory mechanism to cAMP (see XII. B.3.a).

The exocytosis of arylsulphatase from guinea pig eo-
sinophils elicited by opsonised Candida albicans is at-
tenuated by isoprenaline, indicating that the mecha-
nism(s) governing the release of contents from the small
granules is similarly sensitive to the actions of b2 adre-
noceptor agonists (Masuyama and Ishikawa, 1985).

4. Chemotaxis and Chemokinesis. Salmeterol and for-
moterol partially inhibit PAF- and fMLP-induced che-
motaxis of human eosinophils under experimental con-
ditions where salbutamol is inactive (Koenderman et al.,
1992; Eda et al., 1993a; Tool et al., 1996). However, the
concentrations required to achieve this effect are very
high (1–100 mM) and in excess of those required to
increase maximally the cAMP content of eosinophils,
inhibit homotypic aggregation (see below), and effect
airways smooth muscle relaxation. Thus, the relevance
of these findings in relation to the concentration of b2
adrenoceptor agonist achieved in clinical practice is
questionable. Isoprenaline similarly inhibits eosinophil
chemotaxis stimulated by endotoxin-activated serum us-
ing two indices of migration, the Zigmond-Hirsch assay
and a nucleopore filter assay (Clark et al., 1977). It
would appear that species or the nature or concentration
of the activating stimulus has a profound effect on
whether or not b adrenoceptor agonists are active given
that isoprenaline does not inhibit chemotaxis of guinea
pig eosinophils (Sugasawa and Morooka, 1992).

b Adrenoceptor agonists are similarly effective at sup-
pressing LTB4-induced eosinophil chemotaxis (Suga-
sawa and Morooka, 1992) and, consistent with their
effect on the NADPH oxidase (Rabe et al., 1993), are
believed to act via an apparently atypical b receptor

subtype (Sugasawa and Morooka, 1992). Using a novel,
nonradioactive chemotaxis assay modified from the
method described by Capsoni et al. (1989), Sugasawa
and Morooka (1992) reported that although isoprenaline
and fenoterol failed to suppress LTB4-induced chemo-
taxis at concentrations up to 100 mM, the atypical b
adrenoceptor agonist BRL 35135, but not its demethyl-
ated derivative BRL 37344 (Arch et al., 1984; Wilson et
al., 1984; Arch and Kaumann, 1993), was active with an
IC50 of 9 mM. Intriguingly, propranolol failed to antag-
onize the effect of BRL 35135 which is consistent with its
low affinity for the atypical b adrenoceptors that pre-
dominate on rat adipocytes, guinea pig ileum, and rat
colon and for the human cloned b3 adrenoceptor (see
Arch and Kaumann, 1993). In contrast, the nonselective
b adrenoceptor-blocking drug alprenolol antagonized
the inhibition of chemotaxis elicited by BRL 35135 with
an affinity (pA2 5 5.62) approximately 10-fold lower
than predicted for an interaction with the atypical b
adrenoceptors expressed on guinea pig ileum (pA2 5
6.46). Given that isoprenaline, which is a strong agonist
at b3 receptors, was without inhibitory effect in this
system, Sugasawa and Morooka (1992) have proposed
that guinea pig eosinophils express a novel variant of
the b adrenoceptor that is distinct from the b1, b2, and
b3 adrenoceptor subtypes currently classified.

In contrast to guinea pig and, to some extent, human
eosinophils, the b2 adrenoceptor agonists salbutamol
and salmeterol are inactive at preventing PAF- and
LTB4-induced migration of rat peritoneal eosinophils
(Alves et al., 1996).

5. Adhesion and Adhesion Molecule Expression. In
anesthetized, pathogen-free F344 rats, the i.v. adminis-
tration of SP and bradykinin produces an inflammatory
response in the airways characterized by the adherence
of proinflammatory leukocytes to venular endothelial
cells along with plasma extravasation and edema (see
V.H.1 and V.I). Bowden et al. (1994) demonstrated that
acute administration of rats with eformoterol reduced
the number of eosinophils adherent to venules in the
airway mucosa in response to both inflammatory stim-
uli. This effect was mediated by b2 adrenoceptors since it
was abolished by ICI 118,551 (Bowden et al., 1994). A
clue to the mechanism of action of eformoterol in that
model can be inferred from a study by Berends et al.
(1997) in which isoprenaline, at a maximally effective
concentration, suppressed the up-regulation of the ad-
hesion of CD11b (by 43%) and the shedding of L-selectin
(by 34%) on human eosinophils evoked by PAF.

Salmeterol, but not salbutamol, has been reported to
inhibit the adherence of human eosinophils to fibronec-
tin-coated plastic in response to PAF and IL-5 by a
mechanism that does not apparently involve agonism of
b2 adrenoceptors (Ezeamuzie and Al-Hage, 1998).

6. Membrane Lipid Metabolism. Few reports have ap-
peared in the literature describing the effect of b2 adre-
noceptor agonists on the liberation of lipid mediators
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from eosinophils and the little information available is
contradictory. For example, the short-acting b2 adreno-
ceptor agonist salbutamol has been reported to inhibit
fMLP-, C5a-, and PAF-induced LTC4 generation from
human eosinophils (Munoz et al., 1994; Tenor et al.,
1996), whereas salmeterol was inactive under roughly
comparable experimental conditions at concentrations
that suppressed chemotaxis (Tool et al., 1996). Salmet-
erol similarly failed to prevent fMLP-induced PAF gen-
eration (Tool et al., 1996).

7. Homotypic Aggregation. The ability of guinea pig
eosinophils to undergo homotypic aggregation in re-
sponse to PAF and C5a is effectively antagonized by b
adrenoceptor agonists (Teixeira et al., 1996a; Teixeira
and Hellewell, 1997a). In fact, salbutamol is signifi-
cantly more potent at suppressing aggregation than
H2O2 formation with an EC50 similar to that required
for cAMP accumulation. Moreover, in contrast to studies
on the NADPH oxidase, the PDE4 inhibitor rolipram
markedly potentiates the inhibitory effect of salbutamol
at a concentration that has no effect on aggregation per
se (Teixeira et al., 1996a), suggesting that cAMP-depen-
dent mechanisms regulate this response. It is intriguing
that whereas salmeterol fails to inhibit H2O2 generation
from LTB4-stimulated eosinophils (Rabe et al., 1993)
and actually behaves as a b adrenoceptor antagonist,
PAF- and C5a-induced homotypic aggregation are, par-
adoxically, suppressed in a propranolol-sensitive man-
ner (Teixeira et al., 1996a; Teixeira and Hellewell,
1997a). Several explanations can be advanced for this
discrepancy, although no firm conclusion can be drawn
at the present time. The first is that guinea pig eosino-
phils express two populations of inhibitory b adrenocep-
tor that regulate, independently, the cell-signaling path-
ways responsible for the activation of the NADPH
oxidase and homotypic aggregation. This hypothesis
would be consistent with the anomalous pA2 values that
have been calculated for a range of b adrenoceptor an-
tagonists in chemotaxis and respiratory burst assays
(Sugasawa and Morooka, 1992; Rabe et al., 1993). Alter-
natively, the sensitivity of the signal transduction path-
way that ultimately promotes homotypic aggregation to
the inhibitory action of cAMP might be considerably
greater that those mechanisms that govern the activa-
tion of the NADPH oxidase. However, it is noteworthy
that the failure of PDE4 inhibitors to potentiate the
inhibitory effect of salbutamol on H2O2 generation is not
consistent with a cAMP-dependent mechanism of action.
Thus, as in other tissues, b adrenoceptor agonists might
recruit multiple and distinct signal transduction cas-
cades that negatively regulate eosinophil activation
(Maguire and Erdos, 1980; Barber et al., 1989; Rooney et
al., 1991; Vaziri and Downes, 1992; Wu et al., 1995; Xiao
et al., 1995) which can theoretically involve signaling via
Ga and Gbg heterodimers (Daaka et al., 1997).

8. In Vivo Effects. The effect of b adrenoceptor agonists
on stimulus-induced eosinophil recruitment in vivo is

the subject of some debate. When acute studies are per-
formed in laboratory animals, short- and long-acting b2
adrenoceptor agonists are generally active (but see Ban-
ner et al., 1995; Namovic et al., 1996) at preventing
pulmonary and cutaneous eosinophilia in response to a
variety of stimuli including allergen (Fugner, 1989;
Whelan and Johnson, 1990, 1992; Sanjar et al., 1991;
Whelan and Johnson, 1990, 1992; Sugiyama et al., 1992;
Teixeira et al., 1993, 1995a; Whelan et al., 1993; Howell
et al., 1995; Teixeira and Hellewell, 1997a). Similarly, in
humans, the systemic administration of isoprenaline
can decrease circulating eosinophil number (Ohman et
al., 1972) which may be responsible, at least in part, for
the ability of b2 adrenoceptor agonists to abolish cuta-
neous eosinophilia in sensitized human volunteers (Ting
et al., 1983). It is likely that part of the inhibitory effect
of b2 adrenoceptor agonists on eosinophil recruitment is
due to a direct effect on the eosinophil (Teixeira and
Hellewell, 1997a). This is suggested from a study per-
formed with salmeterol-treated, 111In-labeled guinea pig
eosinophils (where the inhibitory effect persists for
many hours even after extensive washing) which, when
injected into recipient guinea pigs, do not migrate to
skin sites exposed to proinflammatory stimuli (Teixeira
and Hellewell, 1997a).

Considerable controversy surrounds the effect of b2
adrenoceptor agonists on various direct and indirect in-
dices of immune and proinflammatory cell activation. In
clinical asthma, the demonstration of a LPR is indicative
of airway inflammation where eosinophils are believed
to play a pathogenic role. Accordingly, the sensitivity of
the LPR to b2 adrenoceptor agonists has been studied in
some detail. However, it must be borne in mind that
allergen-induced inflammatory responses are acute
events contrived to monitor relatively rapid changes in
lung function. Thus, the assessment of these parameters
is similar to many of the measurement that are made in
animal models of “asthma” and must be distinguished
from the true pathology which is characterized by a
self-perpetuating, chronic inflammation of the airways.
It is vital to make this distinction because b2 adrenocep-
tor agonists might not affect allergen-induced LPR and
the chronic inflammatory response equally.

The administration of a “standard” dose (200 mg) of
salbutamol to asthmatic subjects has no effect on the
LPR (Cockcroft and Murdock, 1987), yet high doses of
short- and long-acting b2 adrenoceptor agonists (salme-
terol and formoterol) are effective at blocking the late
bronchoconstriction that is manifest in many asthma
sufferers (Twentyman et al., 1990, 1991; Palmqvist et
al., 1992; Pedersen et al., 1993). Unfortunately, inter-
pretation of these data is complicated by the possibility
that b2 adrenoceptor agonists prevent the LPR by func-
tional antagonism at the level of the airways smooth
muscle (even in the absence of detectable bronchodila-
tation), rather than by exerting an anti-inflammatory
action. This difficulty has necessitated the study of ad-
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ditional, more direct and unambiguous measurements of
airway inflammation. For example, several investiga-
tors have assessed the effect of b2 adrenoceptor agonists
on eosinophil number in the circulation and BAL fluid
and on the level of degranulation products in the serum.
Dahl and Venge (1978) reported that the acute admin-
istration of salbutamol and terbutaline promoted eosi-
nopenia and lowered the serum concentration of ECP in
a group of asthmatic subjects, indicating a direct action
on circulating eosinophils. In follow-up studies, inhaled
salmeterol blocked the increase in serum ECP concen-
tration during the LPR following general or local endo-
bronchial allergen provocation (Dahl et al., 1995; Mur-
ray et al., 1995); however, no change in the number of
eosinophils present in the BAL fluid was noted (Murray
et al., 1995) which is in agreement with the results
presented by Calhoun et al. (1995). In contrast, Di
Lorenzo and coworkers (1995) were unable to detect any
reduction in the serum ECP concentration or in circu-
lating eosinophil number in 20 mild atopic asthmatic
subjects given salbutamol. This lack of consistency is
compounded by the results of another investigation
where salmeterol effectively attenuated the increase in
serum ECP and EDN levels evoked by allergen in 12
asthmatic subjects but did not prevent the blood eosin-
ophilia (Pedersen et al., 1993).

Fiber-optic bronchoscopy has allowed an assessment
of airway inflammation within the clinical setting and
has been used to evaluate the potential anti-inflamma-
tory effect of a variety of drugs including b2 adrenocep-
tor agonists. With the exception of one study (Dahl et al.,
1995), which found that salmeterol (50 mg b.i.d. for 4
weeks) produced a significant reduction in the levels of
ECP in the BAL fluid, no evidence has been provided
that chronic administration of either short-acting or
long-acting b2 agonists to asthmatics is efficacious when
eosinophil number or secretory products are used as
indices of inflammation (Adelroth et al., 1990; Howarth
et al., 1992; Jeffery et al., 1992; Laitinen et al., 1992;
Davies et al., 1993; Kraft et al., 1995; Manolitsas et al.,
1995). In fact, in two investigatations (Davies et al.,
1993; Manolitsas et al., 1995), compelling evidence was
presented that eosinophils accumulated in the airway
mucosa in subjects given salbutamol chronically (200 mg
q.i.d; 4 months) when compared to placebo. Moreover,
the number of cells that were EG21 (a marker of the
secreted form of ECP) was increased, suggesting that
they were activated (Manolitsas et al., 1995). Similarly,
regular inhaled salbutamol was shown in 1997 to in-
crease the number of eosinophils and level of ECP in the
sputum of 10 mild asthmatic (Gauvreau et al., 1997).
Taken together, these findings could have some bearing
on the observation that regular treatment of asthmatic
subjects with isoprenaline (Van Metre, 1969) and fenot-
erol (Sears et al., 1990) has been associated with an
apparent worsening of the disease and a predisposition
to increased risk of a life-threatening attack.

P. Somatostatin

Five distinct somatostatin receptors (denoted sst1 to
sst5) have been identified in humans and mice and be-
long to the seven transmembrane-spanning family of
receptors. Each sst receptor is the product of a different
gene and couples primarily to Go/i. See Bruns et al.
(1995) for additional details.

Eosinophils have the capacity to synthesize, store, and
release (Aliakbari et al., 1987) somatostatin, although it
is not known whether they express cognate sst recep-
tors. However, the somatostatin antagonist lanveotide
effectively inhibits the peripheral blood and peritoneal
eosinophilia precipitated in rats by i.p. administration of
Sephadex beads, cyclophosphamide, PAF, or allergen (in
sensitized animals) (Etienne et al., 1989a,b). Since so-
matostatin is known to affect T lymphocyte prolifera-
tion, and since T cells are involved in the differentiation
of hematopoetic cells to eosinophils, it is possible that
somatostatin decreases, indirectly, eosinophil availabil-
ity and recruitment.

Q. Lipoxins

Structurally, lipoxins are acyclic eicosanoids that con-
tain a conjugated tetraene structure and three alcohol
groups (Serhan et al., 1984a,b; Serhan and Samuelsson,
1988; Steinhilber and Roth, 1989; Serhan, 1991). The
two major lipoxins in this series of eicosanoids are posi-
tional isomers and have been named LXA4 (5S,6R,15S-
trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid)
and LXB4 (5S,14R,15S-trihydroxy-6,10,12-trans-8-cis-
eicosatetraenoic acid). Other lipoxins also have been
identified and are known as LXC4, LXD4, and LXE4
(Steinhilber and Roth, 1989). The human and murine
LXA4 receptors have been cloned, expressed, and their
distribution at the mRNA level mapped (Fiore et al.
1994; Serhan et al., 1994; Takano et al., 1997). In the
mouse, LXA4 receptor mRNA transcripts are most abun-
dantly expressed in blood leukocytes followed by the
spleen and lung (Takano et al., 1997). Both receptors
have a sequence indicative of a seven transmembrane-
spanning G protein-coupled receptor and share 73%
identity at the amino acid level (Fiore et al. 1994; Serhan
et al., 1994; Takano et al., 1997). Binding studies have
established that 3H-labeled LXA4 interacts with LXA4
receptors with high affinity (Kd 5 1–2 nM); LTD4 effec-
tively competes for this site whereas LXB4 does not,
indicative of lipoxin receptor heterogeneity. In CHO
cells transfected with the murine or human LXA4 recep-
tor, LXA4 promotes GTP hydrolysis and the release of
esterified arachidonic acid by a pertussis toxin-sensitive
mechanism (Fiore et al., 1994, Takano et al., 1997).
These results are consistent with findings in human
neutrophils where LXA4 evokes functional responses
through Gi/Go-coupled receptors (Fiore et al., 1994).
Phylogenetically, the murine and human LXA4 receptor
belongs to the CC chemokine family of G protein-coupled
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receptors rather than to the eicosanoids such as the
prostanoids (Toh et al., 1995).

Receptors for LXA4 have not been unequivocally iden-
tified on eosinophils but they are probably expressed
based on functional studies. Thus, although little is
known of the biological activities of the lipoxins, LXA4 is
weakly chemotactic for human eosinophils, evoking re-
sponses about 20% of that produced by PAF and fMLP.
In addition, LXA4 inhibits PAF- and fMLP-induced eo-
sinophil migration (Soyombo et al., 1994) but has no
effect on ECP release per se or on degranulation effected
by fMLP (Soyombo et al., 1994). LXA4 has been shown to
activate PKC with potency greater than DAG (Hansson
et al., 1986). However, it displays selectivity for PKCg
(Shearman et al., 1989) which predominates in the cen-
tral and peripheral nervous systems but is not expressed
by human eosinophils (Evans et al., 1999). The biological
activities of LXB4, C4, D4, and E4 equally are obscure.

VI. Interleukin-3, Interleukin-5, and Granulocyte/
Macrophage Colony-Stimulating Factor

The hematopoietins, which include IL-3, IL-5, and
GM-CSF, are important regulators of eosinophil func-

tion and exert both distinct and overlapping effects (Ta-
bles 11, 12, and 13 for details and Miyajima et al.,
1992a,b). The IL-5 receptor in humans is selectively
expressed by eosinophils and basophils but not neutro-
phils or monocytes (Chihara et al., 1990; Ingley and
Young, 1991). This contrasts with cell surface receptors
for IL-3 and GM-CSF that have a more ubiquitous dis-
tribution (Clutterbuck et al., 1989; Ogawa, 1993).

A. Receptor Expression and Regulation

Radioligand-binding experiments using 125I-labeled
IL-5 have demonstrated cross-competition among IL-3,
IL-5, and GM-CSF (Lopez et al., 1989, 1991) due to a
structural similarity in hematopoeitic cytokine recep-
tors. Thus, all three receptors are composed of two sub-
units: a 60- to 80-kDa a subunit, that is unique to each
receptor, and a common b subunit (bc), which has a mass
between 120 and 140 kDa (Tavernier et al., 1991). In-
terleukin-3, IL-5, and GM-CSF interact with the a sub-
unit of their respective receptors with low affinity,
whereas the additional interaction with the bc subunit
results in the formation of a high-affinity ligand-recep-
tor complex, thereby permiting cell signaling to occur

TABLE 11
Some functional effects evoked by IL-3 in eosinophils

Functional Effect References

Promotes proliferation and differentiation Warren (1988); Dvorak et al. (1989); Clutterbuck and Sanderson
(1990); Ema et al. (1990)

Increases cell survival Rothenberg et al. (1988); Tai et al. (1991); Wallen et al. (1991)
Inhibits apoptosis Tai et al. (1991); Atsuta et al. (1995)
Induces hypodense phenotype Chihara and Nakajima (1989); Clutterbuck et al. (1989);

Rothenberg et al. (1989)
Weak chemoattractant Warringa et al. (1991); Hakansson and Venge (1994);

Yamaguchi et al. (1988a)
Increases phagocytosis of Candida albicans Fabian et al. (1992a, b)
Increases killing of Staphylococcus aureas and Schistosoma mansoni Rothenberg et al. (1988); Fabian et al. (1992a)
Increases CR3 expression Thorne et al. (1990); Walsh et al. (1990b); Walsh et al. (1991a);

Hartnell et al. (1992a)
Increases CR3 binding affinity Blom et al. (1994)
Increases binding to glass Walsh et al. (1990b)
Increases binding to ICAM-1/VCAM-1 Fattah et al. (1996)
Induces ICAM-1 expression Czech et al. (1993)
Synergizes with TNFa/b to induce ICAM-1 Hansel et al. (1992); Czech et al. (1993)
Increases FcgRII expression and binding Hartnell et al. (1992b); Koenderman et al. (1993)
Stimulates GM-CSF release Alam and Grant (1995)
Induces CD4/CD25 expression Riedel et al. (1990)
Increases CD23 expression Mawhorter et al. (1996)
Increases CD69 expression Hartnell et al. (1993)
Increases CD30L expression Pinto et al. (1996)
Increases CD81 expression Mawhorter et al. (1996)
Increases TGFa mRNA and protein expression Brach et al. (1994); Elovic et al. (1998)
Increases TGFb1 mRNA and protein expression Elovic et al. (1998)
Increases PAF receptor expression Kishimoto et al. (1996b)
Synergizes with GM-CSF to increase IL-5 binding Chihara and Nakajima (1989)
Up-regulates PAF receptor expression Kishimoto et al. (1996a, b)
Enhances C5a-induced IL-8 release Miyamasu et al. (1997)
Enhances chemotaxis to PAF, LTB4, fMLP, C5a, IL-8, and opsonised

particles
Warringa et al. (1991); Hakansson et al. (1994)

Enhances LTC4 release to A23187, fMLP, C5a, and PAF Rothenberg et al. (1988); Takafuji et al. (1991)
Induces EDN degranulation and NADPH oxidase activation from

adherent eosinophils
Horie et al. (1996)

Enhances A23187-induced arylsulphatase and b-glucuronidase
release

Fabian et al. (1992a)

Enhances ECP and EPX release to C3b-coated Sepharose Tai and Spry (1990); Carlson et al. (1993)
Enhances C3a- and C5a-induced ECP release Takafuji et al. (1995, 1996)
Enhances EDN release to IgA- and IgG-Sepharose-coated beads Fujisawa et al. (1990)
Enhances dexamethasone-induced HLA-DR and HLA-DP expression Guida et al. (1994)
Synergizes with IFN-g to induce HLA-DR expression Hansel et al. (1992)
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(Miyajima et al., 1992b; Murata et al., 1992; Koike and
Takatsu, 1994). It is possible that the cross-competition
between cytokines results from a limited number of bc
subunits that would limit the extent of eosinophil acti-
vation. In human eosinophils, a single population of
receptors for IL-5 has been identified although the bind-
ing constants are variable. Thus, IL-5 has been reported
to interact with eosinophils with an affinity of 19 pM
(Tagari et al., 1993), 120 pM (Lopez et al., 1991), 170 to
330 pM (Migita et al., 1991), and 400 pM (Ingley and
Young, 1991); a broad spectrum of Bmax values (260–
1500 sites/cell) also has been reported (Migita et al.,
1991; Lopez et al., 1991; Okada et al., 1998). Less re-
search has been done with IL-3 and GM-CSF but they
appear to interact with a single class of noninteracting
sites with Kd values of 470 pM and 44 pM, respectively
(Lopez et al., 1989).

Regulation of the IL-5 receptor, as well as of the syn-
thesis, storage, and release of IL-5, clearly is important
in determining eosinophil responses. However, rela-
tively little is known of the factors that control the
transcription and expression of these proteins. It has
been reported that transforming growth factor (TGF) b1

and phorbol 12-myristate 13-acetate (PMA) down-regu-
late IL-5 receptor a chain mRNA transcripts in vitro in
a remarkably stimulus-specific manner (Zanders, 1994).
Indeed, a host of other stimuli including ILs 1 to 11,
G-CSF, GM-CSF, LIF, stem cell factor (SCF), erythro-
poetin, IFN-g, RANTES, MIP-1a, EGF, platelet-derived
growth factor (PDGF), dexamethasone, forskolin, reti-
noic acid, and cyclosporin A were inactive. Conversely,
up-regulation of IL-5 mRNA was observed in bronchial
biopsies taken from asthmatic individuals (Yasruel et
al., 1997). In that study, the majority of the IL-5 receptor
mRNA was associated with eosinophils, suggesting that
they represent the major target for IL-5-induced re-
sponses. The gene encoding the IL-5 receptor a subunit
is located in region 3p26 of chromosome 3 (Tavernier et
al., 1991) and encodes a membrane-anchored form that
is produced by alternative mRNA splicing (Tavernier et
al., 1992). In addition, two novel soluble isoforms, which
are secreted into body fluids, also are produced that
arise from either normal mRNA splicing or from the
absence of a splicing event (Tavernier et al., 1992). Al-
though the soluble isoforms bind IL-5 in in vitro assays,
their role in vivo is presently unclear; however, it is

TABLE 12
Some functional effects evoked by IL-5 in eosinophils

Functional Effect Reference(s)

Promotes proliferation and differentiation Enokihara et al. (1988); Jabara et al. (1988); Warren (1988);
Clutterbuck et al. (1989); Dvorak et al. (1989); Clutterbuck and
Sanderson (1990); Ema et al. (1990)

Increases cell survival Yamaguchi et al. (1988a); Tai et al. (1991); Kita et al. (1992)
Inhibits apoptosis Her et al. (1991); Tai et al. (1991); Yamaguchi et al. (1991); Stern et

al. (1992)
Induces hypodense phenotype Rothenberg et al. (1989); Owen et al. (1990); Kita et al. (1992)
Weak chemoattractant Yamaguchi et al. (1988b); Coeffier et al. (1991b); Sehmi et al. (1992b);

Hakansson et al. (1994)
Increases phagocytosis in Candida albicans Fabian et al. (1992a,b)
Increases killing of Staphylococcus aureas Fabian et al. (1992a,b)
Weak inducer of EDN, ECP, EPO, and MBP release Fujisawa et al. (1990); Kita et al. (1992)
Increases CR3 expression Thorne et al. (1990); Walsh et al. (1990b); Hartnell et al. (1992a);

Lundahl et al. (1993); Neeley et al. (1993); Sedgwick et al. (1995)
Increases CR3 binding affinity Walsh et al. (1991a); Blom et al. (1994)
Increases binding to glass Walsh et al. (1990b)
Increases binding to HUVECs Walsh et al. (1991a); Sedgwick et al. (1995)
Increases binding to HMVECs Walsh et al. (1990b); Walsh et al. (1991a)
Increases binding to ICAM-1/VCAM-1 Fattah et al. (1996)
Synergizes with TNFa/b to induce ICAM-1 Czech et al. (1993)
Increases FcgRII expression Koenderman et al. (1993)
Increases CD69 expression Hartnell et al. (1993)
Increases CD30L expression Pinto et al. (1996)
Increases TGFa mRNA and protein expression Brach et al. (1994); Elovic et al. (1998)
Increases TGFb1 mRNA and protein expression Elovic et al. (1998)
Increases PAF receptor expression Kishimoto et al. (1996a,b)
Enhances chemotaxis to PAF, LTB4, fMLP, C5a, RANTES,

IL-4, and opsonized particles
Sehmi et al. (1992b); Warringa et al. (1992a); Hakansson and Venge

(1994); Schweizer et al. (1994)
Enhances LTC4 release to A23187, fMLP, C5a, and PAF Takafuji et al. (1991); Laviolette et al. (1995); Takafuji et al. (1995)
Enhances NADPH oxidase response to PMA, fMLP, and

opsonized particles
Tagari et al. (1993); van der Bruggen et al. (1993a); Sedgwick et al.

(1995)
Induces EDN degranulation from adherent eosinophils Horie et al. (1996)
Enhances C3b-induced ECP release Carlson et al. (1993)
Enhances C3a- and C5a-induced ECP release Takafuji et al. (1995, 1996)
Enhances EDN release to IgA- and IgG-Sepharose-coated beads Fujisawa et al. (1990); Kita et al. (1991a)
Enhances dexamethasone-induced HLA-DR/DP expression Guida et al. (1994)
Promotes expression of p35 and p40 IL-12 mRNAs and

biologically active protein
Grewe et al. (1998)

Up-regulates ad integrin Grayson et al. (1998)
Increases LTB4 receptor mRNA levels Huang et al. (1998)
Releases MIF Rossi et al. (1998)
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likely that they neutralize the effect of IL-5 on target
tissues (Tavernier et al., 1992; Devos et al., 1993). Re-
cent studies have identified two functional promoter
regions, P1 and P2, in the gene encoding the IL-5 recep-
tor a subunit that are located in the 59 upstream regions
of exon 1 (L. Sun et al., 1995) and exon 2 (J. Zhang et al.,
1997), respectively. Using the eosinophilic cell line
AML14, P1 promoter activity has been localized within a
561-base pair (bp) sequence proximal to the transcrip-
tional start site (Z. Sun et al., 1995). 59-Deletion mutants
within that region have identied a 34-bp domain (2432
to 2398) that confers approximately 80% promoter ac-
tivity and is highly active in a myeloid cell- and eosino-
phil-specific manner (Z. Sun et al., 1995). However, con-
sensus sequences for known transcription factors are
absent indicative of unique myeloid cell- and, possibly,
eosinophil-specific, regulatory elements. Subsequent
studies identified an enhancer element (EOS1) within
the P1 promoter (Sun et al., 1996). A comparison with
other models of transcription factor binding shows that
EOS1 is similar to the bacterial helix-turn-helix phage l

and 434 repressor-operator complexes, and the Cys4
zinc finger glucocorticoid response element (GRE) mo-
tifs. The possibility that the enhancer element may func-
tion as a GRE is supported by the identification of an
AP-1-binding site adjacent to the EOS1 domain. This is
significant as AP-1:GRE is a composite response ele-
ment in the regulation of a number of genes (Sun et al.,
1996). The P2 promotor is located within a 66-bp region
(231 to 135) of exon 2 and features a 59-CCAAT-39-
binding domain for the transcription factor CCAAT-en-
hancer binding protein (C/EBP), and two consensus mo-
tifs (25 to 11 and 113 to 118) for the oncogene c-ets (J.
Zhang et al., 1997). However, of particular interest is the
presence of a novel 6-bp element (59-CTAATT-39), span-
ning 219 to 214, that is essential for P2 promotor ac-
tivity and which is activated by a transcription factor
specific to the eosinophil lineage (J. Zhang et al., 1997).

B. Signal Transduction

The binding of IL-3, IL-5, and GM-CSF to their cog-
nate receptors leads to the activation of multiple signal-

TABLE 13
Some functional effects evoked by GM-CSF in eosinophils

Functional Effect Reference(s)

Promotes proliferation and differentiation Clutterbuck et al. (1989); Clutterbuck and Sanderson (1990); Ema et al.
(1990)

Increases cytotoxicity Lopez et al. (1986); Silberstein et al. (1986); Owen et al. (1987)
Increases cell survival Lopez et al. (1986); Owen et al. (1987); Vancheri et al. (1989); Tai and

Spry (1990); Wallen et al. (1991); Hallsworth et al. (1992)
Inhibits apoptosis Tai et al. (1991); Alam et al. (1994); Atsuta et al. (1995)
Induces hypodense phenotype Caulfield et al. (1990); Owen et al. (1990)
Weak chemoattractant Warringa et al. (1991); Yamaguchi et al. (1988b)
Increases phagocytosis of Candida albicans Fabian et al. (1992a,b)
Increases killing of Staphylococcus aureas Fabian et al. (1992a,b)
Increases CR3 expression Thorne et al. (1990); Walsh et al. (1991b); Hartnell et al. (1992a); Tomioka

et al. (1993); Sedgwick et al. (1995)
Increases CR3 binding affinity Blom et al. (1994)
Increases binding to glass Walsh et al. (1990b)
Increases VLA4-mediated binding to activated endothelium Sung et al. (1997)
Increases binding to ICAM-1/VCAM-1 Fattah et al. (1996)
Synergizes with TNFa/b to induce ICAM-1 Hansel et al. (1992); Czech et al. (1993); Horie et al. (1997a)
Stimulates IL-5 release Alam et al. (1994)
Increases FcgRII expression Koenderman et al. (1993); Mawhorter et al. (1996)
Increases CD69 expression Hartnell et al. (1993)
Increases CD30L expression Pinto et al. (1996)
Increases CD4/CD25 expression Riedel et al. (1990)
Increases CD23/CD81 expression Mawhorter et al. (1996)
Increases CD80/CD86 expression Tamura et al. (1996)
Increases TGFa mRNA and protein expression Brach et al. (1994)
Increases PAF receptor expression Kishimoto et al. (1996a,b)
Induces IL-2 mRNA expression in combination with A23187 Bosse et al. (1996)
Synergizes with TNFa to induce CD54 expression Horie et al. (1997b)
Enhances fMLP and PAF induced CD11b expression and adherence Tomioka et al. (1993); Nagata et al. (1995b)
Induces EDN release and activates NADPH oxidase from adherent

cells
Horie et al. (1996)

Enhances chemotaxis to PAF, LTB4, fMLP, IL-8, C5a, RANTES,
IL-4, and opsonized particles

Warringa et al. (1991); Dubois et al. (1994a)

Enhances LTC4 release to A23187, fMLP, C5a, and PAF Silberstein et al. (1986); Owen et al. (1991); Howell et al. (1989); Takafuji
et al. (1991); Fabian et al. (1992a); Nagata et al. (1995b; Laviolette et al.
(1995)

Enhances fMLP-induced NADPH oxidase activation and adherence Nagata et al. (1995b)
Enhances fMLP-induced PAF release Triggiani et al. (1992)
Enhances ECP and EPX release to C3b-coated Sepharose beads Tai and Spry (1990); Carlson et al. (1993)
Promotes expression of p35 and p40 IL-12 mRNAs and protein Grewe et al. (1998)
Enhances A23187-induced arylsulphatase and b-glucuronidase

release
Fujisawa et al. (1990)

Enhances EDN release to IgA- and IgG-Sepharose-coated beads Fujisawa et al. (1990)
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ing pathways (Fig. 5; Koenderman et al., 1996; van der
Bruggen and Koenderman, 1996; Yousefi et al., 1997).
Although the a and bc subunits of hematopoietic recep-
tors do not exhibit intrinsic kinase activity, activating
cytokines cause rapid changes in the tyrosine phosphor-
ylation of a number of cellular proteins (van der Bruggen
et al., 1993a) through the recruitment of cytoplasmic
tyrosine kinases and phosphatases. Ligation of the IL-5
receptor on human eosinophils induces a rapid recruit-
ment of the tyrosine kinases lyn, syk, and Jak-2 to the bc
subunit of the receptor (Alam et al., 1995; Pazdrak et al.,
1995a,b; van der Bruggen et al., 1995; Bates et al., 1996)
along with the tyrosine phosphatase SHPTP-2 (Pazdrak
et al., 1997). Similarly, GM-CSF activates lyn and Jak-2
(Simon et al., 1997b). In addition, IL-5 promotes the
phosphorylation of p52shc, an adapter protein that phys-
ically links cell surface receptors to downstream signal-
ing elements, and enhances its association to another
adapter protein, Grb (Bates et al., 1998). Other early
signaling events that occur in eosinophils exposed to
IL-5 include the activation of PtdIns 3-kinase and the
subsequent phosphorylation of PKB (Coffer et al., 1998).
Despite these data, the down-stream biochemical events
or the functional responses they ultimately promote are
not clearly defined. However, it has been established
that IL-5 stimulates the Ras-Raf1-MEK-ERK protein
kinase cascade in human eosinophils (Alam et al., 1995;
Pazdrak et al., 1995a; Bates et al., 1996; Coffer et al.,
1998), although, at present, there are contradictory re-
ports concerning the ERK isoform that is activated. In-
dependent studies by Bates et al. (1996) and Hiraguri et
al. (1997) found that anti-ERK antibodies immunopre-
cipitated three proteins of molecular weights 42, 44, 45
kDa and 40, 42, 44 kDa, respectively and, consistent
with Pazdrak et al. (1995a), found that IL-5 activated

the higher molecular weight species, that is probably
ERK-1. However, those data contrast to the recent re-
port of Coffer et al. (1998) who found that IL-5 only
activated ERK-2. The upstream events linking the Ras-
Raf1-MEK-ERK pathway to the IL-5 receptor have not
been fully characterized but antisense studies have im-
plicated a role for SHPTP-2 in ERK-2 activation
(Pazdrak et al., 1997). Similarly, PtdIns 3-kinase and,
possibly, PKB also are involved since the activation of
ERK-1 by IL-5 and GM-CSF is inhibited by wortmannin
(Hiraguri et al., 1997).

Other proteins necessary for signaling through the
IL-5 receptor include the transcription factor signal
transducers and activators of transcription (STAT) 1,
which probably is activated by Jak-2 (Alam and Grant,
1995; Pazdrak et al., 1995b; van der Bruggen et al.,
1995). de Groot et al. (1997) also have provided evidence
that TPA-responsive element (TRE)- and diad symmetry
element (DSE)-dependent transcription is regulated by
Jak-2 and JNK-54.

Specific domains within the common b subunit of the
IL-5 receptor initiate signaling to the cells’ interior. Us-
ing truncated mutants of the cytoplasmic domain of bc
subunit Sato et al. (1993) identified two functional re-
gions: a membrane proximal domain (amino acid resi-
dues 456–517) essential for proliferation, activation of
Jak-2 and induction of c-myc, and a second domain (ami-
no acid residues 627–763) that is required for the bind-
ing of shc, activation of the p21ras-Raf-l-MEK-ERK ki-
nase cascade, and the induction of c-fos and c-jun. The
association of SHPTP-2 with the IL-5 receptor bc has
been demonstrated in a cell-free reconstituted system
using a synthetic peptide (residues 605–624) of the lat-
ter incorporating Y612 (Pazdrak et al., 1997). Binding to
this phosphotyrosine-containing peptide, but not a pep-
tide in which the phosphorylated Y612 had been mutated
to F, increases SHPTP-2 activity implying that direct
binding can induce enzyme activation (Pazdrak et al.,
1997). Three additional tyrosine residues (Y750, Y806,
Y869) located carboxyl-terminal to amino acid 589 on the
IL-5 receptor bc also have been found that are sur-
rounded by a consensus sequence that favors the bind-
ing of SHPTP-2. Thus, the exact site at which SHPTP-2
binds remains unresolved, although Pazdrak et al.
(1997) have speculated Y612 and/or Y750 are likely can-
didates. A pentapeptide sequence at amino acids 577 to
581 also has been identified that is central to the acti-
vation of JNK-54 and DSE-dependent transcription (de
Groot et al., 1997).

In addition to the bc subunit, the cytoplasmic domain
of the IL-5 receptor a subunit is apparently essential for
IL-5-induced proliferation and the activation of c-jun,
c-fos, and Jak-2 (Takaki et al., 1994; Cornelis et al.,
1995; Muto et al., 1996).

A current model of the IL-5/IL-3/GM-CSF signaling
pathway predicts that activating ligands induce a con-
formational change in their cognate receptors, which

FIG. 5. IL-5-induced signaling in human eosinophils. The binding of
IL-5 with its cognate receptor and dimerization of the a and bc subunits
is believed to trigger the phosphorylation of tyrosine residues upon the
latter by an, as yet, undefined mechanism. The phosphotyrosine residues
then permit the binding and activation of a number of kinases including
lyn, syk, and Jak-2, the phosphatase SHPTP-2, and, possibly, the scaffold
or adapter proteins shc and Grb. A number of downstream kinase cas-
cades and transcription factors then are activated including ras/raf1/
MEK/ERK, PtdIns 3-kinase/PKB, JNK-54, and STAT-1 with resultant
gene transcription. See VI.B for further details.
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thereby activate receptor-bound tyrosine kinases (Fig.
5). These then tyrosine phosphorylate the common b
subunit of the receptor to provide the binding sites for
the recruitment and subsequent activation of lyn, syk,
and SHPTP-2. The tyrosine kinases responsible for this
event are likely to be bound to a proline-rich domain,
also called a box-1 motif, at residues 458 to 465 as
deletion of these amino acids prevents the tyrosine phos-
phorylation of the IL-5 receptor bc subunit (Itoh et al.,
1996). Currently, the identity of this tyrosine kinase(s)
is unknown but a case can be made for Jak-2 based on
the finding that mutant cells lacking this kinase are
unable to phosphorylate the IL-5 receptor bc subunit
after stimulation with GM-CSF (Watanabe et al., 1997).

C. Functional Effects

Interleukin-3, IL-5, and GM-CSF exert a range of
effects on eosinophils (see Tables 11, 12, and 13). In
particular, they are central in determining the number
of eosinophils in the circulation and in tissues through
their ability to promote production, proliferation, and
differentiation (see III.) and to enhance their survival by
suppressing apoptosis (see XII.H). Hematopoeitic cyto-
kines are also implicated in the priming of mature eo-
sinophils to a range of stimuli that evoke chemotaxis
(see XII.A.3), degranulation (see XII.B), adhesion (see
XII.A.2), and activation of the NADPH oxidase (see
XII.G).

It is well established that administration of IL-5 to
laboratory animals induces blood eosinophilia (e.g.,
Iwama et al., 1992) and IL-5 transgenic mice show life-
long eosinophilia in organs without overt pathology, in-
dicating that eosinophils require other factors for acti-
vation (Dent et al., 1990). The importance of IL-5 in
allergen-induced tissue eosinophilia in laboratory ani-
mals also has been examined extensively and similar
investigations now are emerging in humans. Generally,
exposure of sensitized mice, rats, and guinea pigs to
allergen results in the appearance of IL-5 and eosino-
phils in the BAL fluid. The pulmonary eosinophilia is
dependent upon circulating, not locally produced, IL-5
(Wang et al., 1998) and is associated with an increase in
airways reactivity to a variety of stimuli including ace-
tylcholine (ACh), arecholine, histamine, and 5-hydroxy-
tryptamine (Chand et al., 1992a; Gulbenkian et al.,
1992; Nagai et al., 1993, 1996; Brunjzeel et al., 1993).
Similar effects are seen in the pleural cavity of antigen-
challenged sensitized mice (Bozza et al., 1994a). Almost
without exception, the effect of neutralizing IL-5 with
antibodies inhibits eosinophil infiltration but has a vari-
able effect on airways responsiveness (Gulbenkian et al.,
1992; Chand et al., 1992a; van Oosterhout et al., 1993;
Nagai et al., 1993, 1996). Using the technique of adop-
tive transfer, it has been found that IL-5-secreting CD41

Th2-type cells in mice play a pivotal role in generating
blood and airways eosinophilia and in the subsequent
development of bronchial hyperreactivity and lung dam-

age that occurs in response to aeroallergens (Hogan et
al., 1998).

The effect of anti-IL-5 antibodies has not been re-
ported in humans. However, a similar activity to that
described in animals might be prediced given the reports
of Shi et al. (1997, 1998) who found that IL-5 given to
asthmatic subjects by the inhaled route, or instilled di-
rectly into the airways, produced pulmonary eosino-
philia, and increased the number of eosinophils and the
level of ECP in the induced sputum.

IL-5 is also involved in parasitosis and in helminth-
induced airway hyperresponsiveness (Hall et al., 1998).
Indeed, administration of the anti-IL-5 antibody
TRFK-5 to mice inoculated with microfilariae of the
filarial nematode Onchocerca lienalis reduces the ability
of the animals to resist re-infection (Folkard et al.,
1996). A similar approach has been adopted to show that
IL-5 is important in driving eosinophilia and reducing
parasite burden in mice exposed to Aspergillus fumiga-
tus (Murali et al., 1993; Kurup et al., 1997), Toxocara
canis (Buijs et al., 1995), and Angiostrongylus cantonesis
(Sasaki et al., 1993).

VII. Interferon Receptor Superfamily

The IFN receptor superfamily, which includes recep-
tors for IFNa/b, IFNg, and IL-10, characteristically are
single transmembrane-spanning glycoproteins with ei-
ther one (IFNg and IL-10) or two (IFNa/b) homologous
extracellular regions that feature two fibronectin do-
mains. Although, IFNa/b (type I interferons) and IL-10
(a type II interferon) exert biological actions on human
eosinophils (Table 14), only a receptor for IFNg (type II
interferon) has been convincingly identified (Aldebert et
al., 1996; Ishihara et al., 1997). 125I-labeled IFNg la-
beled a single population of noninteracting sites on in-
tact eosinophils with a Kd and Bmax of 3.9 pM and 183 to
233 sites per cell, respectively (Aldebert et al., 1996).
Although IFNg binds with high affinity, the ability of
the agonist-occupied receptor to signal requires a spe-
cies-specific accessory protein that associates with an
epitope on the intracellular domain of the receptor pro-
tein.

VIII. Tumor Necrosis Factor Superfamily

The tumor necrosis factor (TNF) or nerve growth fac-
tor (NGF) superfamily is composed of cytokine receptors
and leukocyte surface glycoproteins. Members of this
family are characterized by three to four cysteine-rich
repeats of 40 amino acids in the extracellular portion of
the molecule (Mallett and Barclay, 1991).

A. Tumor Necrosis Factor a

The type I (CD120a) and type II (CD120b) TNF recep-
tors have respective molecular masses of 55 and 75 kDa
and have been identified on human eosinophils by fluo-
rescence-activated cell sorting analysis and immune
electron microscopy (Zeck Kapp et al., 1994). Generally,
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the actions of TNFa on eosinophils in culture or isolation
usually are proinflammatory (Table 15). In vivo, anti-
bodies against TNFa significantly attenuated the devel-
opment of fibrosis elicited by bleomycin in mice and the
associated pulmonary eosinophilia, suggesting that
TNFa plays an important pathogenic role in that model
(K. Zhang et al., 1997).

B. CD30 Ligand

CD30 is a transmembrane receptor that was origi-
nally identified as a surface antigen on Reed-Sternberg
cells in Hodgkin’s disease and found subsequently to be
preferentially expressed by human activated CD41 T
lymphocytes (Del Prete et al., 1995; Manetti et al., 1994).
Eosinophils are CD302 cells but express an activating
ligand CD30L (CD153) (Pinto et al. 1996) that has ho-
mology only with members of the TNF superfamily
(Falini et al., 1995). The demonstration that native
CD30L can transduce proliferative signals in CD301

targets such as Hodgkin and Reed-Sternberg cells has
suggested a possible role for eosinophils in the pathology

of Hodgkin’s disease (Pinto et al., 1996, 1997). This
contention is supported by the higher than normal levels
of CD30L expression on circulating and tissue eosino-
phils in patients with Hodgkin’s disease and hypereosi-
nophilic syndrome compared to normal subjects. In this
respect, it is interesting that the expression of CD30L on
eosinophils is increased by IL-3, IL-5, and GM-CSF (Pin-
to et al., 1996).

C. CD40 and CD40 Ligand

Originally identified on B lymphocytes and some car-
cinoma cell lines, CD40 is expressed on a variety of cells
including eosinophils (Ohkawara et al., 1996). Structur-
ally, CD40 is a 45- to 50-kDa transmembrane-spanning
glycoprotein and, together with its activating ligand,
CD40L (CD154 also called gp39), is thought to be impor-
tant for the full expression of allergic inflammatory re-
sponses in the airways of animals and possibly humans
(Lei et al., 1998). mRNA and surface protein for CD40
are expressed constitutively on circulating eosinophils of
allergic patients and are up-regulated in response to IgA

TABLE 14
Functional effects evoked by interferons and IL-10 in eosinophils

Functional Effects References

IFNa
Inhibits IL-3-induced eosinophil differentiation Sillaber et al. (1992)
Inhibits eosinophil colony growth Shalit et al. (1995)
Reduces Fc«RI and Fc«RII expression in human cord blood-derived eosinophils Capron et al. (1997)
Inhibits IgA- and IgE-induced ECP, EDN, and IL-5 release and antiparasitic cytotoxicity Lamkhioued et al. (1995a); Aldebert et al. (1996)
Promotes expression of p35 and p40 IL-12 mRNAs and biologically active protein Grewe et al. (1998)

IFNb
Augments FcgR expression De Simone et al. (1986a)

IFNg
Down-regulates IL-3-induced eosinophil differentiation Sillaber et al. (1992)
Decreases Fc«RI expression in cord blood-derived eosinophils Capron et al. (1997)
Enhances Fc«RII expression in peripheral and core blood-derived eosinophils Akutagawa et al. (1994); Capron et al. (1997)
Induces FcgRIII expression in peripheral eosinophil Akutagawa et al. (1994)
Inhibits TNFa-induced CD4 expression Hossain et al. (1996)
Increases number of cells expressing RANTES mRNA Ying et al. (1996)
Increases Mcl-1 expression Druilhe et al. (1998)
Induces IL-3 release Fujisawa et al. (1994)
Induces GM-CSF mRNA expression Moqbel et al. (1991)
Induces IL-6 mRNA expression Hamid et al. (1992)
Induces ICAM-1 expression (response synergized with TNFa) Czech et al. (1993)
Induces CD69 expression Hartnell et al. (1993)

IL-10
Inhibits LPS induced GM-CSF release and survival Takanaski et al. (1994)
Down-regulates CD40 mRNA expression Ohkawara et al. (1996)

TABLE 15
Functional effects evoked by TNF-a in human eosinophils

Functional Effects Reference(s)

Induces adherence to activated HUVECs Lamas et al. (1988)
Enhances eosinophil toxicity to Schistosoma mansoni larvae Silberstein and David (1986); Thorne et al. (1986)
Enhances cytotoxicity to antibody-treated Daudi-lymphoma cells Valerius et al. (1990)
Enhances IgE-mediated cytotoxicity to Schistosoma japonicum Janecharut et al. (1992)
Enhances A23187-induced LTC4 release Roubin et al. (1987)
Enhances fMLP-induced LTC4 release from normodense cells Takafuji et al. (1992)
Increases oxidant production in eosinophils adherent to HUVEC and FCS-coated plates Slungaard et al. (1990)
Induces superoxide release of eosinophils adherent to plastic, fibrinogen, and fibrin Dri et al. (1991); Zeck Kapp et al. (1994)
Induces CD4 expression Hossain et al. (1996)
Induces IL-8 mRNA/protein production and release Nakajima et al. (1996)
Induces the expression of ICAM-1 in combination with IL-3, IL-5, GM-CSF, or IFNg Hansel et al. (1992); Czech et al. (1993)
Induces chemokinesis and increases PAF-induced chemotaxis Nagata et al. (1993)
Promotes expression of p35 and p40 IL-12 mRNAs and biologically active protein Grewe et al. (1998)
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immune complexes and down-regulated by IL-10 (Oh-
kawara et al., 1996). Similarly, constitutive expression
of CD40L on cells obtained from a hypereosinophilic
patient has been reported along with the finding that
normal eosinophils and the eosinophilic cell line Eol-3
will produce CD40L in response to fMLP, PMA, and
ionomycin (Gauchat et al., 1995).

Functionally, cross-linking of CD40 increases eosino-
phil survival in a concentration-dependent manner by
stimulating the release of GM-CSF (Ohkawara et al.,
1996). In the presence of IL-4, eosinophils are able to
induce CD40L-dependent B lymphocyte proliferation in
vitro (Gauchat et al., 1995).

D. CD69

The CD69 antigen is a phosphorylated 28- to 32-kDa
disulfide-linked homodimer that was first identified on
activated T lymphocytes and natural killer cells in the
late 1980s (for review, see Testi et al., 1994). Comple-
mentary DNA clones encoding human and mouse CD69
have been isolated and identified the antigen as a C-type
lectin (Ziegler et al., 1994). Gene-mapping studies have
placed CD69 on mouse chromosome 6 and the p13 region
of human chromosome 12 (Ziegler et al., 1994). The role
of CD69 as a possible marker of activated eosinophils
was proposed shortly after it was originally described
following the detection of significant levels of CD691

cells in the BAL fluid, but not peripheral blood, of pa-
tients with eosinophilic pneumonia (Nishikawa et al.,
1992). It is now known that CD69 is expressed on eosin-
ophils taken from the BAL fluid of patients with mild
asthma (Hartnell et al., 1993, Matsumoto et al., 1998)
and on peripheral blood eosinophils during human par-
asitosis (Mawhorter et al., 1996) consistent with an ac-
tivated phenotype. Indeed, CD691 eosinophils are rap-
idly induced in vitro in response to IL-3, IL-5, GM-CSF,
IFNg, and IL-13 (Nishikawa et al., 1992; Hartnell et al.,
1993; Luttmann et al., 1996; Mawhorter et al., 1996;
Matsumoto et al., 1998). The induction of CD69 by GM-
CSF is inhibited by cycloheximide, suggesting that new
protein synthesis is required (Hartnell et al., 1993).
However, it has been reported that protein and mRNA
for CD69 are found within unstimulated eosinophils
(Luttmann et al., 1996), although those data were not
corroborated in a subsequent investigation (Matsumoto
et al., 1998). The function of CD69 is largely unexplored
but it might be involved in regulating longevity based on
the finding that anti-CD69 antibodies promote apoptosis
of GM-CSF-stimulated eosinophils (Walsh et al., 1996b).

E. CD95

Human CD95 (Fas/APO-1) is a membrane-associated
polypeptide, has an approximate molecular mass of 48
kDa, and is comprised of 335 amino acids with a glyco-
sylated amino-terminal extracellular domain, a hydro-
phobic middle, and an intracellular carboxyl terminus
(Oehm et al., 1992; Smith et al., 1994). The amino ter-

minus contains three cysteine-rich regions that are
characteristic of the TNF/NGF receptor family whereas
a 70-amino acid sequence at the carboxyl terminus fea-
tures a, so-called, “death domain” that is necessary and
sufficient for the transduction of signals that effect ap-
optosis (Itoh and Nagata, 1993).

Freshly purified eosinophils express CD95 at a low
but consistent level (Matsumoto et al., 1995; Druilhe et
al., 1996). However, following culture of eosinophils in
the absence of cytokines the level of CD95 increases in a
time-dependent manner that is associated temporally
with reduced viability and an increase in the number of
apoptotic nuclei (Druilhe et al., 1996). Similarly, cross-
linking of CD95 with specific monoclonal antibodies pro-
duces a time- and concentration-dependent increase in
apoptosis (Matsumoto et al., 1995; Tsuyuki et al., 1995;
Druilhe et al., 1996). mRNA and protein for CD95 are
up-regulated in human eosinophils cultured for 24 h
with IFNg and TNFa, and synergy occurs when both
cytokines are used concurrently. These effects are func-
tionally relevant as eosinophils now display an en-
hanced rate of apoptosis in response to CD95L (Lutt-
mann et al., 1998b). Significantly, IL-3, IL-5, and GM-
CSF prevent CD95 expression by an unknown
mechanism and this presumably contributes to their
survival-prolonging activity (Luttmann et al., 1998b; see
XII.H for additional details). Unlike human neutrophils,
the activating ligand CD95L is not constitutively ex-
pressed on eosinophils (Liles et al., 1996). However,
ligation of CD95 by CD95L present on activated T lym-
phocytes, for example, recruits a number of intracellular
pathways in human eosinophils including JNK-54, lyn,
and IL-1-converting enzyme-like proteases that are be-
lieved to couple the activation of an upstream sphingo-
myelinase to the degradation of lamin B1 (Hebestreit et
al., 1998; Simon et al., 1998). Indeed, the broad-spec-
trum tyrosine kinase inhibitors genistein and lavendus-
tin A prevent CD95-mediated death in human and mu-
rine eosinophils in vitro and partially resolve CD95L-
induced eosinophilia in an in vivo model of inflammation
in the mouse (Simon et al., 1998). Lavendustin A also
inhibits CD95-mediated lamin B1 degradation which
might account in part for its antiapoptotic activity (Si-
mon et al., 1998).

F. Nerve Growth Factor

Relatively little is known of the functional actions of
NGF on eosinophils although chemotaxis, lavicidal ac-
tivity and degranulation (Hamada et al., 1996; Solomon
et al., 1998) all are accredited activities. NGF also sup-
presses fMLP-stimulated LTC4 release (Takafuji et al.,
1992).

IX. Adhesion Molecules

Adhesion molecules or receptors are thought to be
central to the process of eosinophil migration from the
systemic circulation into tissue (see XII.A). A number of
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adhesion molecules are expressed by eosinophils (Fig. 6)
and can be divided into three families: the selectins,
integrins, and immunoglobulins.

A. Selectins

Three selectin families (denoted E, P, and L) have
been described. E-selectin (CD62E) and P-selectin
(CD62P) are expressed on endothelial cells whereas L-
selectin (CD62P) is found on the cell surface of leuko-
cytes including eosinophils (see Bevilacqua and Nelson,
1993; Lasky, 1995). Structurally, the selectins are char-
acterized by an amino-terminal C-type (Ca21-depen-
dent), lectin-like, binding domain, an EGF-like region,
two to nine concensus repeats of sequence similar to
those appearing in complement-regulatory proteins,
such as decay-accelerating factor, a membrane-span-
ning domain, and a short cytoplasmic tail.

The expression of E-selectin by endothelial cells is
induced by certain cytokines and requires gene tran-
scription and protein synthesis (Bevilacqua et al., 1987).
P-selectin is stored within cytoplasmic Weibel-Palade
bodies from where it translocates to the plasma mem-
brane within minutes of stimulation (Johnston et al.,
1989; Geng et al., 1990). In contrast, L-selectin is con-
stitutively expressed by eosinophils but is shed upon
activation with stimuli such as A23187, PAF, fMLP, and
IL-5 (Smith et al., 1992; Neeley et al., 1993). Those in
vitro observations are entirely consistent with the lower
than normal expression of L-selectin on eosinophils har-
vested from the sputum of asthmatic subjects when com-
pared with blood eosinophils (in’t Veen et al., 1998). The
counterligands for selectins are a family of sialylated,
fucosylated, and, in many cases, sulfated, glycosamino-
glycans typified by the moiety sialyl Lewis X (Springer

and Lasky, 1991). The precise carbohydrate moieties
recognized by the selectins are presently unknown, al-
though the peptide backbone appears to be important in
conferring selectin specificity. The majority of selectin
counterligands contain mucin regions that are charac-
teristically serine/threonine/proline-rich peptide se-
quences with rigid backbones and are decorated with
O-linked carbohydrates (Shimizu and Shaw, 1993). To
date, three L-selectin counterligands have been identi-
fied upon endothelial cells: 1) GlyCAM-1, 2) MadCAM-1,
and 3) CD34, which contain mucins or mucin-like do-
mains (Lasky et al., 1992; Briskin et al., 1993; Baum-
hueter et al., 1994). Studies examining P-selectin-medi-
ated binding of eosinophils to nasal polyp endothelial
cells and to soluble P-selectin identified PSGL-1, a sia-
lylated, homodimeric glycoprotein, as the eosinophil
counterligand (Wein et al., 1995; Symon et al., 1996).
PSGL-1 has been isolated by expression cloning from an
HL-60 library and shown to be a 220-kDa homodimer
with a heavily O-glycosylated mucin-like structure
(Sako et al., 1993). Further structural analyses revealed
that, in contrast to the 15-decapeptide repeat found in
neutrophil PSGL-1, the corresponding eosinophil vari-
ant is 10-kDa heavier due to an extra repeat (Symon et
al., 1996). The counterligand for E-selectin was identi-
fied from examining the interaction of eosinophils with
soluble E-selectin immobilized upon plastic plates and
identified as a sialylated, protease-resistant structure
(Bochner et al., 1994).

B. Integrins

The integrins constitute a superfamily of gene prod-
ucts that are composed of two noncovalently linked a
and b transmembrane heterodimeric glycoproteins. Eo-

FIG. 6. Eosinophil adhesion molecules/receptors and their counterligands. See IX for additional details.
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sinophils express the b1 (CD29) integrins: VLA-2
(CD49b), VLA-4 (CD49d), VLA-5 (CD49e), and VLA-6
(CD49f); the b2 (CD18) integrins (Kuijpers et al., 1993):
leukocyte function-associated antigen (LFA) 1 (CD11a,
aLb2), CR3 (CD11b, aMb2, Mac-1), and complement re-
ceptor (CR) 4 (CD11c, aXb2, p150,95); the novel integrin,
adb2, which interacts with intercellular adhesion mole-
cule (ICAM) 3, and the b7 integrin, a4b7 (CD49d/CD103)
(Kuijpers et al., 1993; Walsh et al., 1996a). The integrins
bind to members of the Ig superfamily expressed upon
endothelial cells as well as components of the extracel-
lular matrix (see Fig. 6).

1. b1 Integrins. The most extensively studied b1 inte-
grins are VLA-4 and VLA-6 which bind to the extracel-
lular matrix proteins fibronectin and laminin, respec-
tively. Relatively little is known about VLA-2 and
VLA-5. It has been demonstrated that VLA-4 binds to
the, so-called, IIICS region of fibronectin that features a
25-amino acid alternatively spliced connecting segment,
CS-1, which is recognized by the integrin through a
characteristic LDV motif (Anwar et al., 1993, 1994).
VLA-4 also can bind to VCAM-1, an Ig superfamily
member expressed upon cytokine-exposed endothelial
cells (Bochner et al., 1991a; Dobrina et al., 1991; Weller
et al., 1991b; Atsuta et al., 1998). The interaction occurs
at sites within the first and fourth Ig-like domains of the
protein (Osborn et al., 1992; Vonderheide et al., 1994).
The VLA-4:VCAM-1 and VLA-4:fibronectin interaction
is encouraged when eosinophils are preincubated with
GM-CSF (Sung et al., 1997), SCF (Yuan et al., 1997),
and PAF (Anwar et al., 1994) and is due to an increase
in ligand affinity rather than an up-regulation of recep-
tor expression or changes in receptor distribution (Nee-
ley et al., 1993; Sung et al., 1997; Yuan et al., 1997). The
chemoattractants, RANTES, MCP-3, and C5a tran-
siently increase VLA-4-mediated adhesion to purified
VCAM-1 and fibronectin (Weber et al., 1996). However,
those data contrast with the result of other experiments.
In particular, Burke-Gaffney and Hellewell (1996) have
found that the activation of human lung microvascular
endothelial cells by TNFa was associated with increased
VLA-4-mediated adhesion of eosinophils after their ex-
posure to eotaxin but not to RANTES or MIP-1a.

VLA-4-dependent adhesion alters the functional re-
sponsiveness of eosinophils to a number of stimuli. Thus,
PAF- and A23187-induced LTC4 release (Anwar et al.,
1994; Munoz et al., 1996), the secretion of ECP in re-
sponse to fMLP in cytochalasin B-treated cells (Neeley
et al., 1994), and the enhanced survival of eosinophils
effected by IL-3 and GM-CSF produced in an autocrine
manner (Anwar et al., 1993) all are augmented. Further-
more, cross-linking of VLA-4 receptors with activating
monoclonal antibodies (Laudanna et al., 1993) or after
spontaneous adherence to VCAM-1-coated plates (Na-
gata et al., 1995a) activates the NADPH oxidase through
a mechanism that might be secondary to the activation
of CR3 (Nagata et al., 1995a).

Expression of VLA-6 by eosinophils was reported by
Georas et al. (1993) and is elevated in mildly allergic
patients. Using monoclonal antibodies directed against
CD29 and CD49f, it has been shown that VLA-6 medi-
ates the binding of eosinophils to laminin, a component
of the basement membrane, and suggests that this in-
teraction may contribute to eosinophil localization in the
subendothelium (Georas et al., 1993). Consistent with
the results obtained with fibronectin, the longevity of
eosinophils cultured on laminin is significantly en-
hanced (Tourkin et al., 1993).

As described above, adhesion molecules are involved
in processes other that simple cell-cell interactions such
as survival, leukotriene release, and degranulation.
Currently, the signaling pathways utilized by the b1
integrins in eosinophils are under studied. However, in
other cells it has been established that the cytoplasmic
tail of the b subunit promotes a rearrangement of actin
and cytoskeletal components to form a focal adhesion
complex that predominates at sites where the cell inter-
acts with extracellular matrix components (Clark and
Brugge, 1995). In this respect, ligation of b1 integrins
results in the activation of the focal adhesion kinase
p125Fak (Schaller and Parsons, 1994), which is believed
to recruit a number of other signaling molecules to the
focal adhesion complex that are intimately involved in
cell spreading. Occupancy of the b1 integrin receptor
also results in the activation of src-related protein ty-
rosine kinases (Shattil et al., 1994), the mitogen-acti-
vated protein (MAP) kinase cascade (Schaller and Par-
sons, 1994), and a novel 59-kDa serine/threonine
“integrin-linked kinase” that, as the name implies, as-
sociates with the cytoplasmic tail of b1 integrins (Han-
nigan et al., 1996).

2. b2 Integrins. Human eosinophils express the com-
mon b2 chain CD18 and the a chains CD11a (LFA-1),
CD11b (CR3), and CD11c (p150,95) that bind to ICAM-1
(CD54) (Fischer et al., 1986; Hartnell et al., 1990; Walsh
et al., 1990a,b; Kyan Aung et al., 1991a; Grayson et al.,
1997). A fourth integrin, adb2, also is expressed on hu-
man eosinophils, is up-regulated by IL-5 and Ca21 iono-
phore A23187, and can function as an alternative ligand
for VCAM-1 (Grayson et al., 1998). The expression of
CD11b is greater on eosinophils found in the sputum of
asthmatic subjects when compared with their peripheral
blood counterparts (in’t Veen et al., 1998), and this is
consistent with the ability of proinflammatory media-
tors to up-regulate b2 integrins in general. CR3 numbers
are increased on the surface of human eosinophils by
PAF, IL-3, IL-5, GM-CSF (Thorne et al., 1990; Walsh et
al., 1991a; Hartnell et al., 1992a; Lundahl et al., 1993;
Neeley et al., 1993; Tsai et al., 1993; Fattah et al., 1996),
and, to a lesser extent, TNFa (Thorne et al., 1990), fMLP
(Lundahl et al., 1993; Neeley et al., 1993), LPS (Lundahl
et al., 1993), C5a (Gerard and Gerard, 1991; Lundahl et
al., 1993), and RANTES (Alam et al., 1993). In contrast,
the expression of LFA-1 seems to be more tightly con-
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trolled in that it is up-regulated only by PAF (Hayashi et
al., 1994). A number of investigators have reported that
in addition to receptor number, IL-3, IL-5, GM-CSF, and
RANTES also increase the affinity of b2 integrins for
their counterligands (Blom et al., 1994; Kakazu et al.,
1995).

Binding through CD18 appears to be important for the
activation of the NADPH oxidase (Laudanna et al.,
1993). The interaction of CR3 and LFA-1 with soluble
ICAM-1 promotes the production of reactive oxygen rad-
icals (Chihara et al., 1995a), and CD18-dependent bind-
ing of eosinophils to HSA-coated plates confers sensitiv-
ity to GM-CSF and PAF which are otherwise inactive
(Horie and Kita, 1994). Soluble ICAM-1 and anti-
CD11b-linked to polystyrene microbeads also promote
eosinophil degranulation with the release of ECP and
EDN (Chihara et al., 1995b; Kato et al., 1998a). Mech-
anistically, the adherence of IL-5-treated eosinophils to
protein-coated tissue culture plates via b2 integrins is
accompanied by inositol phosphate accumulation and
the tyrosine phosphorylation of a number of proteins
(Kato et al., 1998a). One of those is the product of the
c-cbl proto-oncogene Cbl, along with two other proteins
of 105 and 115 kDa (Kato et al., 1998a). Similar results
have been obtained with anti-CD11b to activate directly
aMb2. Thus, the tyrosine phosphorylation of Cbl and the
115-kDa proteins along with phosphoinositide hydroly-
sis may play a central role in integrin-dependent func-
tional responses such as degranulation.

3. a4b7 Integrin. In addition to the formation of VLA-4,
the a4 subunit has been shown by immunostaining and
flow cytometry to associate with the b subunit, b7 to
form a4b7 in eosinophils (Erle et al., 1994; Walsh et al.,
1996a). This integrin is expressed at the same level as
a4b1 and is believed to bind to the Ig, MadCAM-1 (Berlin
et al., 1993; Briskin et al., 1993) as well as VCAM-1 and
the CS-1 region of fibronectin (Chan et al., 1992; Ruegg
et al., 1992; Postigo et al., 1993). Although a4b7 is con-
stitutively expressed upon eosinophils, it is poorly active
since the presence of Mn21 is required to demonstrate
adherence (Seminario and Bochner, 1997). This is de-
spite the fact that exposure of eosinophils to PAF has
been shown to induce a4b7-mediated binding to Mad-
CAM-1 but not VCAM-1 in L-12 cells transfected with
the appropriate cDNAs (Walsh et al., 1996a). Thus, in
the absence of stimuli, the binding of eosinophils to
VCAM-1 and fibronectin is mediated predominantly by
VLA-4.

C. Intercellular Adhesion Molecule 1

Intercellular adhesion molecule 1 (CD54) is a member
of the C2-type Ig family of proteins that have been
implicated in cell adhesion and complement binding.
Human ICAM-1 is composed of a 55-kDa core protein, an
extracellular-facing fragment containing five Ig-like do-
mains and up to eight possible sites for N-linked glyco-
sylation, and a 28-amino acid cytoplasmic tail rich in

lysine and arginine that is thought to be responsible for
binding to the cytoskeleton (Staunton et al., 1990;
Carpen et al., 1992; Kirchhausen et al., 1993).

ICAM-1 is not constitutively expressed by circulating
blood eosinophils (Hansel et al., 1992; Czech et al., 1993)
but has been detected on sputum eosinophils (Hansel et
al., 1991a) and in eosinophils recovered from the BAL
fluid of patients with eosinophilic pneumonia (Azuma et
al., 1996). In contrast to data published by Hansel et al.
(1992), Czech et al. (1993) reported that the inflamma-
tory cytokines IL-3, IFNg, and TNFa induce ICAM-1
expression on normal circulating eosinophils. Despite
that discrepancy, there is a consensus that TNFa [and
TNFb (Hansel et al., 1992)] acts synergistically with
IL-3, IL-5, GM-CSF, and IFNg to up-regulate ICAM-1
expression by a mechanism that involves de novo pro-
tein synthesis (Hansel et al., 1992; Czech et al., 1993).
Burke-Gaffney and Hellewell (1998) have shown that
ICAM-1 mediates adhesion of eosinophils to human
bronchial epithelial cells which would aid their accumu-
lation and retention in the airways in diseases such as
asthma.

Little is known of the affect of ICAM-1 binding upon
eosinophil function, although it has been implicated in
GM-CSF- and TNFa-induced degranulation (Horie et
al., 1997a).

X. Immunoglobulins

Eosinophils can express Fc receptors for IgA, IgD,
IgG, and IgM. Receptors for the Fc portion of IgE also
have been detected on eosinophils but controversy sur-
rounds the precise nature of the IgE-FceR interaction
(Kita and Gleich, 1997).

A. Receptors for Fca

The Fc receptor for IgA (CD89) is a transmembrane
glycoprotein expressed by several granulocytes includ-
ing neutrophils and eosinophils (Capron et al., 1988a).
Molecular genetics has mapped the human CD89 gene
to chromosome 19 (Kremer et al., 1992), which contrasts
to the genes that encode other Fc receptors that are
localized to chromosome 1. Structurally, FcaR is com-
posed of five exons spanning approximately 12 kb (de
Wit et al., 1995). The first two exons (denoted S1 and S2)
encode a leader sequence, the third and fourth (termed
EC1 and EC2) each encode a homologous Ig-like domain
and the final exon (TM/C) codes for a short intracellular
region, a transmembrane segment and a short cytoplas-
mic tail (de Wit et al., 1995). Evidence exists for at least
seven transcripts of FcaR designated FcaRa.1 to 6 and
FcaRb that arise from alternative mRNA splicing (Patry
et al., 1996; Pleass et al., 1996; van Dijk et al., 1996).
That discovery is entirely consistent with what has been
established for FcgRI (Porges et al., 1992) and FcgRII
(Brooks et al., 1989) and suggests that the expression of
several closely related proteins by alternative splicing
provides a means of diversifying function (see X.D).
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The cDNAs derived from the two major Fca tran-
scripts of both human eosinophils and neutrophils have
been cloned and sequenced, and the neutrophil variants
stably transfected in CHO-K1 cells (Pleass et al., 1996).
The largest clone, FcaRa.1, represents the previously
described full-length receptor (Maliszewski et al., 1990),
whereas the splice variant, FcaRa.3, is a truncated form
lacking the entire second, membrane-proximal Ig do-
main. The long and short forms do not bind anti-FcaR
monoclonal antibodies equally or serum IgA, supporting
the idea that alternative splicing of FcaR gene could
provide a means of altering FcaR receptor function.

van Dijk et al. (1996) also have reported a novel isoform
of the FcaR that is expressed in human eosinophils and
neutrophils. The cloned receptor, FcaRb, differs from pre-
viously described splice variants in that it lacks the exon
(TM/C) encoding the transmembrane/intracellular region
of the wild-type receptor and exon EC2 is extended to
encode 23 additional amino acids. Transfection of IIA1.6
murine pro-B lymphocytes with the cDNA for FcaRb re-
sults in high levels of expression at the plasma membrane,
along with the secretion of a significant amount of protein.
The expression of FcaRb at the cell surface is not affected
by phosphatidylinositol-specific PLC, indicating that gly-
cosyl phosphatidylinositol (GPI) linkage of FcaRb is un-
likely. In IIA1.6 murine pro-B lymphocytes expressing
FcaRb and FcgR, which is necessary for signal transduc-
tion by wild-type FcaR, neither Ca21 mobilization nor ty-
rosine phosphorylation is observed upon receptor cross-
linking (van Dijk et al., 1996), suggesting that FcaRb has
a different functional role to FcaR.

The molecular mass of FcaR on eosinophils (70–100
kDa) is significantly higher when compared to its coun-
terpart on human neutrophils (55–75 kDa). However,
removal of N-linked carbohydrates from both cell types
yields a protein of 32 kDa, indicating differential de-
grees of glycosylation between neutrophils and eosino-
phils (Monteiro et al., 1993). The expression of FcaR is
up-regulated approximately 3-fold on human eosino-
phils exposed to the Ca21 ionophore A23187 (Monteiro
et al., 1993). Similarly, eosinophils harvested from aller-
gic individuals express higher levels of FcaR when com-
pared with control subjects (Monteiro et al., 1993).

Functionally, anti-IgA induces eosinophil migration in
atopic and healthy volunteers (Rihoux et al., 1990). A
number of studies also have demonstrated the expres-
sion of functional IgA receptors on human eosinophils
(Capron et al., 1988a; Abu Ghazaleh et al., 1989; Kita et
al., 1991b) with particular reference to degranulation.
Secretory IgA and IgA-coated Sepharose beads are par-
ticularly effective at promoting EDN release by a mech-
anism that is enhanced by IL-3 and GM-CSF (Abu
Ghazaleh et al., 1989; Kita et al., 1991b).

B. Receptors for Fcd and Fcm

It has been reported (Wardlaw et al., 1995) that hu-
man eosinophils express Fc receptors for IgD but this

assertion has not received further documentation. In
contrast, normal blood eosinophils lack FcmR (CD7)
(Ottesen et al., 1977; Walsh and Kay, 1986) although
binding of IgM can apparently occur when cells are
cultured in vitro (De Simone et al., 1982a).

C. Receptors for Fce

It has been known for some time that certain allergic
diseases and parasitic infections are associated with
peripheral blood and tissue eosinophilia along with an
increase in total and antigen-specific IgE. Indeed, there
is a close correlation between serum IgE and the prev-
alence and severity of allergic diseases such as asthma
(Sears et al., 1991). Similarly, the acquisition of immu-
nity against Schistosoma hematobium is positively cor-
related with the appearance of anti-schistosome IgE an-
tibodies (Hagan et al., 1991). IgE is known to promote
mast cell and eosinophil degranulation (Khalife et al.,
1986; Galli et al., 1991; Tomassini et al., 1991), enhance
antigen presentation to, and internalization by, T lym-
phocytes when bound to antigen-presenting cells (APCs)
(Mudde et al., 1995; Maurer et al., 1996) and mediate
killing of invading parasites by acting as a ligand for
antibody-dependent, cell-mediated cytotoxicity (Capron
et al., 1982; Truong et al., 1993; Capron and Capron,
1994; Gounni et al., 1994a). Thus, these and other data
have led to the general view that IgE is implicated in the
direct and indirect activation of eosinophils in allergic
diseases and following parasite infestation.

Arbesman and coinvestigators were the first to dem-
onstrate that complexed IgE binds to human eosinophils
(Ishikawa et al., 1974; Fujita et al., 1975), an observa-
tion that was extended several years later by the iden-
tification of cell surface receptors for IgE (Capron et al.,
1981). Subsequently, it was established that IgE bound
to a receptor on eosinophils with low affinity (Kd ; 100
nM) that was similar, but not identical, to CD23 (FceRII)
expressed by B lymphocytes (Capron et al., 1986, 1991;
Jouault et al., 1988; Yokota et al., 1988; Capron and
Joseph, 1991). However, in 1998, definitive evidence was
provided that human eosinophils express FceRII that is
identical with CD23 expressed by B lymphocytes (Ab-
delilah et al., 1998). Structurally, FceRII is a 45-kDa
type II glycoprotein that can exist in at least two iso-
forms, FceRIIa and FceRIIb, that differ only in their
amino-terminal cytoplasmic tail and arise through dif-
ferential mRNA splicing (Yokota et al., 1988). Eosino-
phils express both forms of FceRII (Abdelilah et al.,
1998). Since those original observations, two other re-
ceptors for IgE have been identified on eosinophils and
to some extent characterized. In mice, one of these,
FceRI, is a tetrameric protein composed of an a chain,
which binds IgE, a b chain, and two disulfide-linked g
chains (Ravetch and Kinet, 1991), and is recognized by
IgE with high affinity (Kd ; 0.1 nM) (Gounni et al.,
1994a,b). Interestingly, the human homolog of FceRI
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lacks the b subunit. The other receptor is a galactose-
specific, thiol-dependent S-type lectin called Mac-2 that
has a high degree of sequence homology to rat eBP and
carbohydrate-binding protein 35 and binds to IgE with
relatively low affinity (Truong et al., 1993).

Evidence is available that eosinophils can express
each variant of Fce, although the extent to which this
occurs depends on whether the cells are purified from
normal subjects or from individuals with eosinophilia
associated with allergic inflammation or parasitosis.
Further distinctions probably can be made based on the
type and severity of disease. For example, the expression
of FceRII is seemingly restricted to a hypodense popula-
tion of eosinophils harvested from subjects with promi-
nent eosinophilia and certain allergic disorders (Capron
et al., 1986, 1989; Rumi et al., 1998), whereas little, if
any, expression is detected on eosinophils from “normal”
individuals (Hartnell et al., 1989; Rumi et al., 1998).
Comparable data also have been reported for FceRI
(Terada et al., 1995; Rajakulasingam et al., 1997, 1998;
Sihra et al., 1997) and Mac-2/eBP (Truong et al., 1993).
In the later case, Northern blot analysis using eosinophil
RNA from several eosinophilic donors probed with hu-
man Mac-2 and human eBP cDNAs routinely identified
a single 1.2-kb product (Truong et al., 1993). In 50% of
those eosinophil preparations, complementary flow cy-
tometry experiments identified cell surface Mac-2 ex-
pression. This was confirmed by Western immunoblot-
ting which resulted in the labeling of a 29-kDa band,
consistent with Mac-2 protein, and two smaller anony-
mous peptides of 20 and 15 kDa (Truong et al., 1993).

It is clear from the aforementioned discussion that
there is a wide body of evidence from studies in humans
that IgE can activate eosinophils and promote antibody-
dependent, cell-mediated cytotoxicity through FceRI,
FceRII, and Mac-2/eBP. However, some controversy still
surrounds the functional role of Fce on eosinophils (Kita
and Gleich, 1997). In particular, allergen-antibody com-
plexes also can activate eosinophils via FcgR (Kaneko et
al., 1995a). Similarly, FcgR are involved in IgG-depen-
dent cytotoxicity toward parasites (Butterworth et al.,
1977). Moreover, eosinophils purified from the BAL
fluid, liver granulomas, and bone marrow cultures of
parasite-infected mice do not express cell surface recep-
tors for Fce and fail to bind IgE under conditions where
eosinophils can be activated following ligation of FcgR
by IgG (Jones et al., 1994; de Andres et al., 1997b). A
major implication of those findings is that the mouse
might not be a suitable species to study human immu-
nological disease and, clearly, this requires careful in-
vestigation. Another enigmatic set of observations that
currently defies explanation is the finding that antibod-
ies raised against all three Fce receptors abolish IgE
binding and antibody-dependent, cell-mediated cytotox-
icity (see Kita and Gleich, 1997 and references therein).

D. Receptors for Fcg

Three functional receptors for IgG have been identi-
fied and characterized on human leukocytes. On resting
human eosinophils, only one of these, FcgRII (CDw32),
is constitutively expressed to any extent (Hartnell et al.,
1990) although murine eosinophils also express FcgRIII
(CD16) in reasonable numbers (de Andres et al., 1997b).
IFNg up-regulates FcgRII expression (Valerius et al.,
1990; Hartnell et al., 1992b) and is associated with en-
hanced IgG-induced antibody-dependent cellular cyto-
toxicity (Valerius et al., 1990). Those data are consistent
with an earlier publication that described an increase in
Fcg receptor density and cytotoxicity in response to
IFNb (De Simone et al., 1986). Structurally, FcgRII is a
40-kDa protein, for which IgG has low affinity, and is
widely distributed among leukocytes.

Hartnell et al. (1992b) have reported that the expres-
sion of FcgRII is up-regulated by IL-3. However, al-
though a subsequent study (Koenderman et al., 1993)
found that the addition of IL-3, IL-5, and GM-CSF to
freshly prepared eosinophils produced a transient 3-fold
increase in their ability to form rosettes with IgG-sensi-
tized erythrocytes, no change in FcgRII receptor expres-
sion was noted. Indeed, it was concluded that changes in
FcgRII signaling might reflect alterations in CR3 recep-
tor function since the increase in rosetting activity was
accompanied by a commensurate augmentation in the
binding of iC3b to CR3. Further support for that conten-
tion was that an antibody against CD11b prevented the
effects of IL-3, IL-5, and GM-CSF (Koenderman et al.,
1993). The reason for the discrepancy between the two
studies is unclear. In murine eosinophils, ligation of
FcgRII results in phosphatidylinositol hydrolysis which
has been linked to the activation of 5-lipoxygenase (de
Andres et al., 1991b).

The other Fcg receptor for which IgG has low affinity
is the 50- to 70-kDa FcgRIII (CD16). Although not ex-
pressed constitutively by human eosinophils, high levels
are found intracellularly that can be mobilized to the cell
surface by mediators such as IFNg, PAF, fMLP, and C5a
in a cycloheximide- and dexamethasone-sensitive man-
ner, indicating a requirement for new protein synthesis
(Hartnell et al., 1992b; Zhu et al., 1998). The up-regula-
tion of FcgRIII is transient and protein is rapidly re-
leased into the medium and then is reabsorbed. The role
of FcgRIII on eosinophils in unknown but it is likely that
the secretion of the soluble receptor might neutralize
bioavailable IgG. Treatment of human eosinophils with
phosphatidylinositol-specific PLC markedly reduces cell
surface CD16 expression, indicating that it is a GPI-
linked receptor (Zhu et al., 1998). The finding that anti-
CD16 effects membrane depolarization and LTC4 re-
lease in cytokine-treated cells (Hartnell et al., 1992b)
indicates that this effect is functionally relevant. Those
data are concordant with the enhanced expression of
IgG receptors in general by eosinophils purified from
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subjects with eosinophilia (that have presumably be-
come exposed to a host of mediators in vivo) when com-
pared with normal individuals (Kishimoto, 1988).

The cDNA of each FcgR has been cloned (Stuart et al.,
1987; Simmons and Seed, 1988; Allen and Seed, 1989)
which led to the discovery of two FcgRIII isoforms
[FcgRIII-1 (CD16-1), FcgRIII-2 (CD16-2)] that are encoded
by distinct genes (Ravetch and Perussia, 1989; Scallon et
al., 1989). FcgRIII-1 is expressed predominantly by resting
neutrophils and is anchored to the cell surface by a GPI
linkage; however, after activation of the cell, this receptor
is shed and is detected in the plasma (Huizinga et al., 1988,
1989, 1990). In contrast, FcgRIII-2 is a transmembrane-
spanning receptor expressed by natural killer cells (Hibbs
et al., 1989; Kurosaki and Ravetch, 1989; Lanier et al.,
1991). The FcgRIII variant(s) expressed on eosinophils and
the function(s) it specifically subserves is currently un-
clear, although treatment of IFNg-exposed eosinophils
with phosphatidylinostitol-specific PLC reduces FcgRIII
expression, suggesting that eosinophils express a function-
ally active GPI-linked form (FcgRIII-1) of the receptor
(Hartnell et al., 1992b).

FcgRI (CD64) is a 72-kDa protein for which IgG has high
affinity and is expressed almost exclusively by monocytes.
However, receptors for FcgRI can be induced in human
eosinophils treated with IFNg (Hartnell et al., 1992b).

IgG, immobilized to Sephadex beads, evokes a host of
functions in eosinophils. Of significance was the demon-
stration in 1997 that ligation of Fcg receptors on murine
eosinophils provided a napoptotic signal. de Andres et al.
(1997a) reported that culture of murine eosinophil precur-
sors with a rat monoclonal antibody (2.4G2) that reacts
with CD32 and CD16 promoted several hallmarks of apo-
ptosis: chromatin condensation, annexin V binding, and
induction of CD95. Since murine eosinophils express CD16
and CD32, additional experiments were performed with
precursors obtained from mice in which the CD16 gene
was disrupted. The results of those experiments estab-
lished that apoptosis was absolutely dependent on CD32
and the activation of CD95 (de Andres et al., 1997a). Col-
lectively, those data highlight a novel mechanism of induc-
ing apoptosis which, if reproduced in human eosinophils,
could be relevant to cell-mediated tissue injury and anti-
body-dependent cellular cytotoxicity (see XII.H).

Other functional effects for which IgG has been accred-
ited include degranulation (Kita et al., 1991b,d; Tomassini
et al., 1991; Kaneko et al., 1995a,b), activation of the
NADPH oxidase (de Andres et al., 1997b), and the gener-
ation of LTC4 (Shaw et al., 1985; Cromwell et al., 1988;
Moqbel et al., 1990a) and PAF (Cromwell et al., 1990).

XI. Miscellaneous

A. Interleukin-1

The type I (CDw121a) and type II (CDw121b) IL-1
receptor have been identified in mice and humans.
Structurally, these receptors are single transmembrane

glycoproteins with approximate molecular masses of 80
kDa and 60 kDa, respectively. Both receptors bind the
predominately membrane associated IL-1a, IL-1b that
is secreted, and IL-1RA. Studies with human eosinophils
suggest that IL-1b induces the secretion of arylsulfatase
and b-glucuronidase whereas a combination of IL-1a
and IL-1b inhibits the activation of the NADPH oxidase
in response to the phorbol diester PMA (Pincus et al.,
1986; Whitcomb et al., 1989). Prolonged exposure (30–
180 min) of guinea pig eosinophils to IL-1b suppresses
A23187-induced [3H]AA and phosphatidylcholine re-
lease by down-regulating the activity of PLA2 (Debbaghi
et al., 1992).

Sanz et al. (1995) demonstrated that intradermal ad-
ministration of IL-1b to rats stimulates the accumula-
tion of radiolabeled eosinophils to the sites of injection
(Sanz et al., 1995). Moreover, persuasive evidence for a
role of IL-1b in allergen-induced eosinophil migration
derives from the ability of IL-1RA to prevent pulmonary
eosinophilia when given by aerosol to sensitized guinea
pigs immediately before challenge (Watson et al., 1993).
Similarly, IL-1RA blunts the LPR and the number of
hypodense eosinophils that appear in the BAL fluid of
allergen-challenged sensitized guinea pigs (Okada et al.,
1995). These findings have prompted clinical trials with
IL-1RA in asthma, the results of which are eagerly
awaited. It is noteworthy that the in vivo chemotactic
activity of IL-1b is likely to be secondary to the activa-
tion of the endothelium (Lamas et al., 1988; Bochner et
al., 1991a; Kyan Aung et al., 1991b; Ebisawa et al., 1992)
and/or to the release of other chemoattractants such as
PAF and IL-8 (Sanz et al., 1995).

B. Interleukin-2

The IL-2 receptor is composed of three polypeptide
chains; an a chain (p55, CD25), a b chain (p 75, CD122),
and a g chain (gc) that is common to several cytokine
receptors. IL-2 binds to the a and b chains with low
affinity but does not interact with gc. However, a high-
affinity IL-2:receptor complex is achieved when the li-
gand ligates the abgc heterotrimer; interactions of inter-
mediate affinity also can occur with agc and bgc
heterodimeric forms of the receptor. In T lymphocytes,
the b chain of the IL-2 receptor is essential for activation
and features critical sequences within its intracellular
domain necessary for effective signaling (Hatakeyama
et al., 1989). The same appears to be true for gc (Zuraw-
ski and Zurawski, 1992) whereas the a chain alone can-
not transduce the IL-2 signal.

In 1991, Rand et al. (1991a) reported that IL-2 was
chemotactic for eosinophils obtained from both normal
and hypereosinophilic individuals, which implied that
cognate receptors for this cytokine were expressed. The
demonstration that eosinophils were exquisitely sensi-
tive to IL-2 (EC50 5 1 pM) and that chemotaxis was
blocked by antibodies against p55 and p75 led to the
proposal that IL-2 mediates its effect via the abgc het-
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erotrimer (Rand et al., 1991a). The expression of p55 is
increased on eosinophils taken from hypereosinophilic
individuals and after exposure (24–48 h) of normal eo-
sinophils to supernatant obtained from U937 cells. GM-
CSF, IL-3, and IL-16 (lymphocyte chemotactic factor) act
similarly, albeit to a lesser extent (Riedel et al., 1990;
Rand et al., 1991a), implying that the IL-2 receptor may
represent an activation marker. The IL-2 receptor is
induced on eosinophils taken from rats with experimen-
tal adjuvant arthritis (Meacock et al., 1991).

In vivo, infusion of IL-2 into the systemic circulation,
as part of cancer chemotherapy, results in eosinophilia
and an attendant increase in colony-stimulating activity
(Macdonald et al., 1990; Sedgwick et al., 1990a). This
effect is indirect and is due to the release of IL-3, IL-5, or
GM-CSF. In Brown Norway rats, IL-2 promotes pulmo-
nary eosinophilia with localization around the airways
(Renzi et al., 1992).

C. Interleukin-4

The IL-4 receptor is composed of at least two chains, a
140-kDa a chain (CD124) to which IL-4 binds with high
affinity and is responsible for signal transduction and gc,
found also in the IL-2 receptor, which acts as an ampli-
fier (Russell et al., 1993; Kondo et al., 1993). In vivo
studies have implicated IL-4 in selective eosinophil re-
cruitment, although that response may be secondary to
the activation of the endothelium (see XII.A.2). In hu-
man and murine eosinophils, IL-4 exerts a number of
actions upon eosinophils (Table 16) by mechanisms that
may involve the activation of PtdIns 3-kinase and PKB
(Coffer et al., 1998).

D. Interleukin-10

No evidence is available that eosinophils express re-
ceptors for IL-10. However, administration of IL-10 to
sensitized Brown Norway rats attenuates the LPR and
coincident eosinophilia following allergen provocation
(Woolley et al., 1994b). Similarly, intranasal IL-10 sig-
nificantly suppresses eosinophil recruitment into the

lungs and peritoneum of immunized mice in response to
ovalbumin (Zuany-Amorim et al., 1995, 1996). These
data have lead to the suggestion that IL-10 may have
utility in the treatment of eosinophil-dependent inflam-
matory diseases such as asthma (Pretolani and Gold-
man, 1997) although clinical studies have yet to be per-
formed.

E. Interleukin-12

Interleukin-12 is a cytokine that promotes Th1-driven
cell immunity while suppressing Th2-mediated re-
sponses. Although the direct effect of IL-12 on eosinophil
function is not established, this cytokine has a marked
impact on allergen- and parasite-induced eosinophil re-
cruitment in vivo. Generally, antigen-induced airway
eosinophilia in sensitized mice is suppressed by IL-12
(Gavett et al., 1995; Kips et al., 1995; Wynn et al., 1995;
Iwamoto et al., 1996; Sur et al., 1996; Pauwels et al.,
1997) through its ability to enhance the secretion of
IFNg, which subsequently suppresses the secretion of
IL-5. Thus, Th2-cells are believed to represent a pri-
mary, albeit indirect, target for IL-12. Furthermore, in
IFNg-treated knockout mice, IL-12 is proinflammatory
(Wynn et al., 1995). However, Pearlman et al. (1997)
have reported that the administration of IL-12 to mice
infected with Onchocerca volvulus, which promotes on-
chocercal keratitis, enhanced the pathology and the as-
sociated eosinophil recruitment into the corneal stroma
by augmenting the elaboration of eosinophil chemokines
even though the level of IFNg was also elevated (Pearl-
man et al., 1997). Thus, it would appear that the ulti-
mate effect of IL-12 in inflammation is more complex
and not simply due to changes in the relative expression
of IFNg and IL-5.

F. Interleukin-13

A recent report has documented the ability of IL-13 to
increase eosinophil survival by promoting the synthesis
and/or release of IL-3 and GM-CSF in a sufficient con-
centration to act in an autocrine manner (Luttmann et

TABLE 16
Functional effects evoked by interleukin-4 in eosinophils

Species Functional Effect Reference

Human Induces chemotaxis in peripheral blood of individuals with atopic dermatitis but not normal
subjects

Dubois et al. (1994)
Dubois and Bruijnzeel (1994)

Human Inhibits IL-3 and IL-5 induced differentiation of cord blood mononuclear cells Ochiai et al. (1995)
Human Down-regulation of Fc«RI and up-regulation of Fc«RII expression during differentiation of

eosinophils from cord blood precursors
Capron et al. (1997)

Human Stimulates Fc«RI mRNA expression in individuals with allergic rhinitis Terada et al. (1995)
Human Stimulates HLA-DR expression Weller et al. (1993)
Human Up-regulates TGFb1 and down-regulates TGFa mRNA and protein Elovic et al. (1998)
Human Promotes expression of p35 and p40 IL-12 mRNAs and biologically active protein Grewe et al. (1998)
Human Promotes apoptosis and overcomes survival-enhancing effect of IL-3, IL-5, and GM-CSF Wedi et al. (1998)
Mouse Inhibits constitutive mRNA but not protein expression of FcgRII and FcgRIII de Andres et al. (1994)
Mouse Increases FcgRII binding but not expression in BAL cells obtained mice with Toxoccara cais-

infected lungs
Jones et al. (1994)

Mouse Inhibits b-glucuronidase and arylsulfase release stimulated by IgG- but not IgE-coated beads as
well as antibody-dependent killing of S. mansoni through down-regulation of IgG FcR but not
IgE FcR

Baskar et al. (1990)

Mouse Stimulates class II MHC expression Mawhorter et al. (1993)
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al., 1996). IL-13 also is chemotactic for human eosino-
phils (Horie et al., 1997b) and induces CD69, a putative
marker of activated eosinophils, at the mRNA and pro-
tein level (Luttmann et al., 1996). These effects of IL-13
are mediated via the IL-4 receptor.

G. Transforming Growth Factor b

Three receptors for TGFb have been identified in hu-
mans. Two of these (the type I and type II receptors) are
bound by TGFb with high affinity while the third, or
type III receptor, is recognized by TGFb1 with relatively
low affinity (Wang et al., 1991; Massague, 1992). The
type I and II receptors have intrinsic serine/threonine
kinase activity, are related to the activin receptor, and
are believed to aggregate when transducing the signal
conferred by TGFb. In contrast, the type III receptor,
which includes b-glycan and endoglin in its structure,
does not signal but may concentrate TGFb molecules on
the cell surface and present them to the other TGFb
receptor subtypes.

The complement of TGFb receptors expressed by eo-
sinophils is unknown although the functional effects of
TGFb1 have been studied to some extent. In general,
TGFb1 is inhibitory: it suppresses IL-5-induced degran-
ulation (Alam et al., 1994; Atsuta et al., 1995), abrogates
IL-3-, IL-5-, GM-CSF-, and IFN-g-mediated survival
through the induction of apoptosis (Alam et al., 1994;
Atsuta et al., 1995; Luttmann et al., 1998a), attenuates
the secretion of GM-CSF and IL-5 by IL-3 and GM-CSF,
respectively (Alam et al., 1994), and inhibits IL-3-depen-
dent differentiation of human eosinophils in a bone mar-
row suspension system (Sillaber et al., 1992). However,
low concentrations of TGFb induce chemotaxis (Lutt-
mann et al., 1998a), indicating that it also has the ability
to activate eosinophils which might reflect expression of
multiple receptors for TGFb. At the biochemical level,
TGFb1 prevents the activation of lyn, Jak-2, and ERK-2
by IL-5 as well as the phosphorylation of STAT-1
(Pazdrak et al., 1995c) although the extent to which
these effects relate to the aforementioned functional re-
sponses remain largely unexplored.

H. Platelet-Derived Growth Factor

PDGF is composed of two chains (A and B) that can
dimerize so that three possible conformations can be
secreted (AA AB and BB). Receptors for PDGF are mem-
bers of the subclass III of receptor tyrosine kinases
which also includes the receptors for c-kit and CSF-1
(c-fms; Yarden et al., 1986; Heldin, 1992). PDGFs exert
their effects through at least two subtypes of the PDGF
receptor denoted a and b. Binding of dimeric PDGF
promotes receptor dimerization with three possible con-
figurations (aa, ab, and bb). Although the PDGF recep-
tor subtype(s) on eosinophils is not known, PDGF-BB,
which binds all three receptor isoforms, elicits a number
of responses including the release of EPO and EDN
(Bach et al., 1992) and, at higher concentrations, the

generation of superoxide, which is primed by prior ex-
posure of eosinophils to phorbol esters (Bach et al., 1991,
1992).

I. Stem Cell Factor

Stem cell factor is expressed either as a soluble or
membrane-bound form and is the endogenous ligand for
c-kit a receptor with intrinsic protein kinase activity
(Ogawa et al., 1991). Recent cytofluorographical analy-
ses have identified c-kit on peripheral blood eosinophils
from both nonatopic and atopic individuals (Yuan et al.,
1997). Although little is known of the role of SCF, it has
been shown to augment GM-CSF- and IL-3-induced eo-
sinophil colony formation (Ichihara et al., 1994), encour-
age the proliferation of eosinophils precursors in the
presence of IL-3, IL-5, and GM-CSF (Kobayashi, 1993),
and increase VLA-4 avidity and the subsequent binding
to fibronectin and VCAM-1 (Yuan et al., 1997). In a
murine model of allergic airway inflammation, Lukacs
et al. (1996b) discovered that the concentration of SCF in
the lungs and serum were markedly increased following
allergen challenge with attendant eosinophilia. Of sig-
nificance was the additional observation that the inflam-
mation was prevented in mice given a neutralizing an-
tibody against SCF, suggesting that it acts as a direct or
indirect eosinophil chemoattractant (Lukacs et al.,
1996b).

J. CD4

The expression of CD4 upon eosinophils obtained from
both normal and eosinophilic individuals was first re-
ported by Lucey et al. (1989a). Immunoprecipitation of a
55-kDa polypeptide using two anti-CD4 antibodies sub-
sequently led to the identification of gp120, a ligand for
human CD4 (Lucey et al., 1989a). Since that original
report other experiments have established that the CD4
ligands, gp120, OKT4 (a CD4 binding antibody), and
LCF [a potent chemotactic factor with activity in the low
picomolar range (Rand et al., 1991b), subsequently iden-
tified as IL-16—see XII.D.9] stimulate eosinophil migra-
tion. The expression of CD4 on human eosinophils is
induced by TNFa, IL-3, and GM-CSF (Riedel et al.,
1990; Hossain et al., 1996).

K. CD9

The CD9 antigen is a 24-kDa cell surface glycoprotein
that belongs to the transmembrane 4 superfamily that is
characterized by four hydrophobic transmembrane-
spanning domains (Wright and Tomlinson, 1994). The
role of CD9 in eosinophils is unknown although immo-
bilization of an anti-CD9 monoclonal antibody, ALB6, to
tissue culture plates induces degranulation (Kim et al.,
1997). That response was inhibited by an antibody
against CD18, suggesting a role for b2 integrins. In
addition, a number of anti-CD9 clones (ALB6/FMC56/
ML13) have been shown to enhance cell survival by
stimulating the production and release of GM-CSF (Kim
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et al., 1997). Fernvik et al. (1995) have identified an
intracellular pool of CD9 in human eosinophils that can
be mobilized in response to PMA. Those investigators
also demonstrated increased CD9 expression on circu-
lating eosinophils of patients with allergic rhinitis be-
fore and during the pollen season (Fernvik et al., 1996).

L. CD44

The designation CD44 encompasses several closely
related type I transmembrane proteins that share ami-
no- and carboxyl-terminal sequences but differ in their
central extracellular domain. Perhaps the single most
important property of CD44 is its ability to bind hyal-
uronic acid that exerts a number of effects including
homotypic cell aggregation, the binding of T lympho-
cytes to bone marrow stromal cells (Borland et al., 1998),
and in cell trafficking where it mediates rolling and firm
adhesion to matrix constituents (Miyake et al., 1990;
Degrendele et al., 1996). Although CD44 ligands other
than hyaluronic acid have been identified, there is little
to indicate a significant role for any of them. In 1998,
Matsumoto et al. (1998a) detected cell surface CD44 on
human eosinophils by flow cytometry with the monoclo-
nal antibody J173 and established that expression was
increased (; 2-fold), in a time- and concentration-depen-
dent manner, after culture of cells with IL-3, IL-5, and
GM-CSF. Significantly, the authors of that study also
noted that expression of CD44 was higher (3- to 8-fold)
in hypodense eosinophils purified from eosinophilic do-
nors and proposed that CD44 might, therefore, repre-
sent a useful cell surface marker of activation. A per-
plexing finding is that normodense, hypodense, and
cytokine-treated eosinophils do not bind hyaluronic acid
(Matsumoto et al., 1998a). However, it is likely that this
anomaly relates to the level of glycosylation which tends
to impede CD44-hyaluronate interactions (Katoh et al.,
1995; Bartolazzi et al., 1996). The function of CD44 on
human eosinophils is unknown.

M. CD52

CD52 is a GPI-linked membrane protein that is ex-
pressed constitutively at the protein and mRNA level in
eosinophils but not neutrophils (Elsner et al., 1996c).
There is a paucity of information on the functions CD52
mediates. Receptor cross-linking results in the inhibi-
tion of C5a-, PAF-, and GM-CSF-induced oxygen radical
production which has led to the suggestion that this
could be used to selectively down-regulate eosinophil
activity during inflammation (Elsner et al., 1996c). The
phorbol ester PMA can down-regulate CD52 expression,
but this effect is not mimicked by IL-3, IL-5, GM-CSF,
IFNg, C5a, RANTES, or PAF (Elsner et al., 1996c).

N. Complement Receptors Not Coupled Through G
Proteins

In addition to receptors for C3a and C5a, eosinophils
also express receptors for a number of other complement

fragments that signal by G protein-independent mecha-
nisms. Henson (1969) first demonstrated that guinea pig
eosinophils could form rosettes with C3-coated erythro-
cytes, a finding that was extended to human eosinophils
7 years later (Tai and Spry, 1976). A number of investi-
gations subsequently established that eosinophils from
several species, including human, express CR1 (CD35),
CR3 (CD11b/CD18), CR4 (CD11c/CD103; p150,95), and
receptors for C1q (Fearon, 1985; Fischer et al., 1986;
Hamada and Greene, 1987; Hartnell et al., 1990, 1992a)
but not CR2 (Spry and Tai, 1976).

1. CR1. CR1 was originally purified as a 205-kDa
single-chain polypeptide from human erythrocyte mem-
branes and subsequently found to be expressed as sev-
eral allotypes—A (190 kDa), B (220 kDa), C (160 kDa),
and D (250 kDa)—that are encoded by a single gene
(Fearon, 1979; Gerdes et al., 1982; Dykman et al., 1983a,
b; Hogg et al., 1984; Ahearn and Fearon, 1989). In all
cases, CR1 is recognized by the complement fragments
C3b, C4b, and iC3b in increasing order of affinity (Ross
et al., 1983; Gordon et al., 1987) as well as C1q (see
below) (Klickstein et al., 1997). Low levels of CR1 gen-
erally are expressed by human eosinophils (Hartnell et
al., 1992a) although the density is increased in response
to certain stimuli including LTB4, 5-HETE, and
5-HPETE (Nagy et al., 1982; Fischer et al., 1986). Noth-
ing is known of the cell signaling pathways activated
following ligation of CR1 on eosinophils. However, expo-
sure of human neutrophils to monomeric C3b increases
CR1 expression (Porteu et al., 1987), and cross-linking of
anti-CR1 antibodies bound to cell surface CR1 induces
Ca21 mobilization and the activation of PLD (Fallman et
al., 1993). Significantly, these effects are enhanced when
anti-CR1 antibodies are bound to a particle (Fallman et
al., 1993), indicating that CR1 is involved in neutrophil
activation.

Functionally, CR1 mediates several effects including
all of those described for the cC1q receptor (see below).
In addition, fMLP (Kay et al., 1979) and high concentra-
tions of histamine (Anwar and Kay 1977, 1980) signifi-
cantly increase the percentage of human eosinophils
that form rosettes with C3b-coated ovine erythrocytes.

2. CR3. CR3 was originally identified as an iC3b re-
ceptor by rosette formation of iC3b-coated erythrocytes
with neutrophils and other leukocytes (Ross and Lam-
bris, 1982). Shortly after that observation, CR3 was
found to be identical with Mac-1 and an integrin (Beller
et al., 1982). Of the varied complement fragments that
can be generated, iC3b is the preferred ligand of CR3
although C3b and C3d will bind, albeit with relatively
lower affinity (Ross et al., 1983; Gordon et al., 1987). The
basic structure of the integrins is described in IX.B. The
aM (CD11b) and b2 (CD18) subunits of CR3 are approx-
imately 170 kDa and 95 kDa, respectively (Sanchez Ma-
drid et al., 1983). The b2 subunit is an integral trans-
membrane glycoprotein composed of three distinct
regions: a short, 46-amino acid carboxyl-terminal cyto-
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plasmic domain, a membrane-spanning region, and an
extracellular component that features conserved resi-
dues required for ligand binding and association with
the a subunit (Kishimoto et al., 1987; Wardlaw et al.,
1990). The topology of aM is similar to the b2 subunit,
and the extracellular domain contains several putative
binding sites for a variety of ligands. In particular, a
so-called “I” (inserted) region is present that has a
unique sequence that binds divalent cations and the
complement fragment iC3b (Diamond et al., 1993; Mich-
ishita et al., 1993).

In addition to the ability of a diverse range of agents to
activate CR3 on eosinophils and to increase its expres-
sion, ligands such as iC3b, ICAM-1, or fibrinogen can
activate eosinophils, resulting in homotypic aggregation
(Koenderman et al., 1991), degranulation, and superox-
ide anion generation (Metcalfe et al., 1977; Zeiger and
Colten, 1977). In many instances, adhesion is prerequi-
site for those functional effects to be manifest (Horie and
Kita, 1994). The biochemical pathways involved in acti-
vating eosinophils have not been delineated. However,
in human neutrophils cross-linking of either CD18 or
CD11b by antibodies evokes a PTX-insensitive Ca21

transient (Sengelov, 1995). PLD is similarly activated in
response to iC3b-opsonized particles, and the src-related
tyrosine kinase p58fgr and the cytoskeletal protein pax-
illin are phosphorylated when neutrophils adhere to fi-
bronectin in the presence of iC3b (Sengelov, 1995).

3. CR4. CR4 shares the same b subunit as CR3 but
has a novel 150-kDa a chain, aX (also known as p150,95
and CD11c), which is 63% homologous to aL (Corbi et al.,
1987). Significantly, the extracellular domain of aX also
features a unique I domain similar to that found in aL
that specifically binds ICAM-1, iC3b, and, to a lesser
extent, C3b (Ross et al., 1983; Corbi et al., 1987; Gordon
et al., 1987). The endogenous cellular ligands for CR4 on
eosinophils are currently unknown and the function this
receptor subserves is obscure. In neutrophils, it has been
suggested that CR4 may have a role as an “assisting”
adhesion protein (Anderson et al., 1986), although
whether this occurs with eosinophils is unexplored. In
macrophages, CR4 is immobile in the plane of the
plasma membrane, and it has been proposed that it is
linked to the cytoskeleton and is responsible for the
phagocytosis of iC3b-coated particles (Ross et al., 1992;
Ross, 1994).

4. The C1q Receptor. The C1 proteolytic complex is the
first molecule in the so-called classical complement
pathway and is activated after an interaction with a
microbe-bound antibody. C1 is composed of six C1q sub-
units which collectively take the form of a bouquet of
flowers with a central collagen-like trunk branching into
six globular peptide chains that feature an antibody-
binding site. C1q is associated with two other subunits,
C1r and C1n, stabilized by Ca21 in a trimolecular com-
plex. Receptors for C1q on human eosinophils were ini-
tially detected by Hamada and Greene (1987), using

125I-labeled C1q, at a density (1.9 3 107/cell) approxi-
mately twice that of autologous neutrophils. Differential
modulation of C1q-mediated functional activities by
monoclonal antibodies across cell types and the subse-
quent finding that ligation of the C1q receptor can occur
through both the collagen-like and globular components
of the molecule led to the proposal of C1q receptor het-
erogeneity (Tenner, 1993). A 60-kDa receptor (cC1qR),
shown in 1993 to be calreticulin (Malhotra et al., 1993),
recognizes the collagen-like amino terminus of C1q and
is constitutively expressed on eosinophils (Kuna et al.,
1996). In addition, a novel 33-kDa receptor (gC1qR) has
been identified on eosinophils through which C1q inter-
acts at the globular carboxyl terminus of the protein
(Peerschke et al., 1994; Kuna et al., 1996). However,
experimental evidence supports the idea that gC1qR is
not membrane-bound, but rather a secreted soluble pro-
tein (van den Berg et al., 1997). It is possible that low
levels may be expressed on the surface of certain cells
complexed with other fluid-phase molecules (van den
Berg et al., 1997). A third, 126-kDa, receptor for C1q,
C1qRp, also has been identified that modulates mono-
cyte phagocytosis (Guan et al., 1991, 1994; Nepomuceno
et al., 1997). Whether this form is expressed by eosino-
phils is unclear. In 1997 it was reported that 125I-labeled
C1q bound specifically to human CR1 transfected into
K562 cells (Klickstein et al., 1997), suggesting that if
this translates to normal cells, a common receptor is
recognized by all three complement opsonins: C1q, C3b,
and C4b. The observation that collagen completely in-
hibited 125I-labeled C1q binding to K562 cells strongly
suggests that CR1 represents the previously defined
cC1qR (see above). The nature and identity of the gC1qR
is ill-defined.

The functional effects that are mediated by cC1qR are
little studied. Work by Hamada and Greene (1987) dem-
onstrated that, in the presence of a small amount of IgG
antibody, C1q enhances the cytotoxic capacity of eosin-
ophils against schistosomula. More recently it was
shown that ligation of the human C1qR induces eosino-
phil migration (Kuna et al., 1996) and promotes super-
oxide anion generation (Tenner, 1993) with cC1q being
the most potent opsonin. Collectively, these findings
support the original suggestion that the C1qR might
play a role in the effector functions of eosinophils
(Hamada and Greene, 1987).

O. Melittin

Several naturally occurring peptides have been impli-
cated in the activation of proinflammatory cells. One of
the most thoroughly investigated of these is melittin, an
abundant component of the venom of honeybees. Melit-
tin is an amphiphilic 26-amino acid peptide that is re-
ported to stimulate, at noncytotoxic concentrations and
by a nonreceptor-mediated mechanism, the exocytosis of
EPO from the specific granules and the generation of TX
(Kroegel et al., 1990b). The latter observation is consis-
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tent with the effect of melittin on human neutrophils
and rat mast cells (Kroegel et al., 1981) and seemingly
results following a direct intracellular action at the level
of PLA2 or a closely associated protein (Kroegel et al.,
1981).

P. Secretory Component

Secretory component is an intrinsic protein localized
to the basolateral surface of secretory epithelial cells,
and is believed to mediate the trans-epithelial transport
of polymeric immunoglobulins, in particular IgA
(Brandtzaeg, 1981). During that process, the polymeric
Ig receptor is cleaved and SC binds to IgA, forming
secretory IgA with the excess SC being released into
secretions (Mostov et al., 1980).

Secretory IgA is a very effective degranulation-pro-
moting stimulus in human eosinophils compared to se-
rum IgA (Abu Ghazaleh et al., 1989). Lamkhioued et al.
(1995a) hypothesized that this discrepancy might simply
be due to the association of SC with IgA that follows
trans-epithelial transport and the subsequent binding of
SC to a specific receptor expressed by eosinophils dis-
tinct from FcaR. Indeed, saturable, high-affinity (Kd 5
30 nM), low-capacity (Bmax 5 1100/cell) binding sites
(receptors ?) for 125I-labeled human SC have been iden-
tified on human eosinophils (see Lamkhioued et al.,
1995a; Motegi and Kita, 1998). Moreover, it was shown
by flow cytometry that purified SC bound to a subpopu-
lation (4–59%) of blood eosinophils purified from 19
patients with eosinophilia in a manner that was pre-
vented by unlabeled SC and secretory IgA, but not by
serum IgA or IgG (Lamkhioued et al., 1995a). Signifi-
cantly, exposure of the same eosinophils to free SC and
secretory IgA, in the presence of a cross-linking agent,
resulted in degranulation whereas serum IgA was inef-
fective. Similar results have been reported for normal
eosinophils where SC enhances cytokine- and IgG-in-
duced superoxide generation (Motegi and Kita, 1998).
Preliminary data indicate that the receptor for SC is a
15-kDa GPI-anchored protein that might be a lectin
(Lamkhioued et al., 1995a). Collectively, these data pro-
vide an explanation for the preferential activation of
human eosinophils by secretory IgA over serum IgA, and
imply that FcaR and/or the 15-kDa receptor for SC could
mediate IgA-driven immune responses.

Q. Human Leukocyte Antigen

In addition to their ability to synthesize and release a
plethora of proinflammatory mediators, eosinophils
have the capacity to act as APCs, which identifies a new
role of eosinophils in regulating the immune response.
As eosinophils mature, they lose Ia antigen (Koeffler et
al., 1980) and, accordingly, express little if any major
major histocompatibility complex (MHC) class II anti-
gens (Lucey et al., 1989b; Weller et al., 1993; Magyar et
al., 1995; Tamura et al., 1996) which is prerequisite for
antigen presentation to CD41 T lymphocytes. However,

in the presence of certain cytokines (GM-CSF, IL-4, IL-5,
IFNg) and in disease states such as chronic eosinophilic
pneumonia (Beninati et al., 1993) and asthma (Hansel et
al., 1991a,b, 1992; Sedgwick et al., 1992b), human leu-
kocyte antigen (HLA) DR1 eosinophils have been de-
tected (Lucey et al., 1989b; Walsh et al., 1990a; Hansel
et al., 1991a, 1992) that are capable of acting as APCs
(Lucey et al., 1989b; del Pozo et al., 1992; Hansel et al.,
1989, 1992; Weller et al., 1993; Mawhorter et al., 1994)
by a mechanism that, in mice (Tamura et al., 1996) and
possibly humans (Bosse et al., 1998), is dependent on
CD80 (B7-1) and CD86 (B7-2). Furthermore, Hansel et
al. (1992) demonstrated that eosinophil-mediated, anti-
gen-specific proliferation of an autologous HLA-DR-re-
stricted clone was prevented by a monoclonal antibody
against HLA-DR. Identical results also have been ob-
tained with murine eosinophils which have been shown
to present antigens derived from the parasite Mesoces-
toides corti to specific T cell clones with an associated
increase in IL-2 generation and consequent proliferation
(del Pozo et al., 1992). In an independent study, the
ability of GM-CSF-treated, human peripheral blood eo-
sinophils (in which the expression of ICAM-1 is in-
creased) to bind human RV16 and to present antigen to
RV16-specific T cells was documented (Handzel et al.,
1998). Those observations were associated with atten-
dant T cell proliferation and the elaboration of IFNg
(Handzel et al., 1998) which provide an explanation for
the exacerbations of asthma symptoms that sometimes
occur after viral infections. As described in XI.J, human
eosinophils also express CD4 which is up-regulated by
IL-3 and GM-CSF and enhances eosinophil migration
when bound by IL-16 for which it is a receptor (Rand et
al., 1991b). This functional property, along with the
possibility that CD41 eosinophils could interact with
HLA-DR1 cells, including other eosinophils, suggests
potentially complex cell-cell interactions during antigen
presentation.

XII. Functional Consequences of Eosinophil
Activation

A. Locomotion

The selective migration of circulating eosinophils
across the endothelium and into tissue occurs sequen-
tially in a number of characteristic, well defined steps
(see Teixeira et al., 1995b; Wardlaw et al., 1995; Knol
and Roos, 1996). These include the 1) reversible binding
of the eosinophil to activated endothelial cells and sub-
sequent “rolling” of the eosinophil along the lumenal
surface of the vessel; 2) firm “adhesion” of the eosinophil
to the endothelium; and 3) “transmigration” of the ad-
herent eosinophil through the endothelium into tissues.
The mechanisms underlying these processes have aided
our understanding of the selective recruitment of eosin-
ophil to sites of chronic inflammation in response to
allergens and parasite infestation. Thus, eosinophils,

262 GIEMBYCZ AND LINDSAY

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


unlike neutrophils, express VLA-4. Moreover, CC che-
mokines, C3a, and LTD4 are selective eosinophil che-
moattractants.

1. Rolling. Eosinophil-endothelial cell interactions are
enhanced after the release of inflammatory mediators
from tissue and/or resident cells. Like neutrophils, the
so-called “rolling” step is thought to be predominately
mediated by selectins expressed on eosinophils (L-selec-
tin) and endothelial cells (E- and P-selectin) that bind to
their respective counterligands (see Fig. 6). Indeed, ev-
idence that all three selectins contribute to primary
tethering or rolling has been provided.

A role for L-selectin in rolling was first suggested from
studies performed under nonstatic conditions which
showed that the adherence of eosinophils to IL-1b-acti-
vated HUVECs was inhibited by blocking antibodies
against L-selectin (Knol et al., 1994). Furthermore, un-
der conditions where L-selectin is shed, the ability of
eosinophils to bind is reduced (Knol et al., 1994). An
examination of the effect of a range of neutralizing an-
tibodies confirmed a role for eosinophil L-selectin, but
not CD18, in the mechanism of rolling along activated
(IL-1) venule endothelial cells of the rabbit mesentery.
That report also suggested a role for VLA-4 through
binding to an unidentified ligand expressed by the en-
dothelium (Sriramarao et al., 1994). However, a recent
study examining eosinophil rolling under flow condi-
tions showed that L-selectin was not required for pri-
mary tethering but, instead, contributed to homotypic
(cell-cell) aggregation and secondary binding in collabo-
ration with PSGL-1 (Kitayama et al., 1997). Evidence in
vitro for a role for L-selectin in C5a-induced homotypic
aggregation has been demonstrated with guinea pig eo-
sinophils (Teixeira et al., 1996b).

Although cytokine-activated endothelial cells can bind
eosinophils via E-selectin (Bochner et al., 1991a; Kyan
Aung et al., 1991a; Weller et al., 1991b), recent studies,
using specific blocking antibodies, have excluded E-se-
lectin in eosinophil rolling along rabbit-activated mes-
enteric venules (Sriramarao et al., 1996). Furthermore,
eosinophils, unlike neutrophils, do not “roll” on mono-
layers of E-selectin-transfected cells (Sriramarao et al.,
1996) or E-selectin-coated surfaces under flow condi-
tions (Kitayama et al., 1997), possibly because of rela-
tively low expression of an E-selectin counterligand(s)
(Bochner et al., 1994). In contrast, a role for P-selectin is
suggested following the demonstration of eosinophil roll-
ingon P-selectin-coated surfaces (Symon et al., 1996;
Kitayama et al., 1997) that was mediated by the binding
of P-selectin to the amino-terminus of PSGL-1 (Patel
and McEver, 1997). That conclusion is supported from
studies of eosinophil binding to eosinophil-rich nasal
polyp endothelial cells (Symon et al., 1994), (that ex-
press E-selectin, P-selectin, and ICAM-1), which was
almost completely inhibited by monoclonal antibodies
raised against P-selectin. In addition, binding was par-
tially blocked by a monoclonal antibody against eosino-

phil CR3 but was unaffected by neutralizing E-selectin,
L-selectin, ICAM-1, VCAM-1, VLA-4, and LFA-1 (Symon
et al., 1994). A central role for endothelial cell P-selectin
in eosinophil rolling is supported by a number of recent
reports. Thus, in vivo studies using a mouse model of
LPS-induced pleurisy established that eosinophil infil-
tration into the pleural cavity at 24 h was inhibited by
monoclonal antibodies to L-selectin (97%) and P-selectin
(54%) but not E-selectin (Henriques et al., 1996). In
contrast, although the more rapid influx of neutrophils
at 4 and 24 h was inhibited by anti-L-selectin, that
response was unaffected by antibodies directed against
either P- and E-selectins unless they were used in com-
bination (Henriques et al., 1996). Eosinophil rolling and
adhesion studied by intravital microscopy in P-selectin-
deficient mice and after the induction of eosinophilic
peritonitis was reduced by 75% when compared to that
of wild-type animals (Broide et al., 1998a). Similarly, the
number of eosinophils recruited into the lung and BAL
fluid of allergen-challenged, P-selectin-deficient mice
was greatly attenuated when compared to that of genet-
ically naı̈ve animals (Broide et al., 1998b).

2. Adhesion. The rolling of eosinophils along activated
endothelial cells is thought to facilitate their subsequent
adherence. Using blocking antibodies, it has been repro-
ducibly shown that firm binding of eosinophils to TNFa-,
IL-1b-, and LPS-activated HUVECs is mediated by CR3/
ICAM-1 and VLA-4/VCAM-1 interactions (Kimani et al.,
1988; Lamas et al., 1988; Walsh et al., 1990b, 1991a;
Bochner et al., 1991a; Dobrina et al., 1991; Kyan Aung et
al., 1991a,b; Weller et al., 1991b). The observation that
VLA-4 is found only on the cell surface of a restricted
number of leukocytes, including eosinophils, monocytes,
basophils, and T lymphocytes, has led to the suggestion
that the expression of VCAM-1 on endothelia can facil-
itate the selective recruitment of these cells. Of potential
importance is the knowledge that IL-4 (Schleimer et al.,
1992) and IL-13 (Sironi et al., 1994; Bochner et al., 1995)
selectively up-regulate the expression of VCAM-1 on
endothelial cells. Since the level of these two cytokines is
elevated in asthma they may, indirectly, govern eosino-
phil trafficking into the lung. Endothelial cell-derived
chemokines that act through CCR3 also are able to
promote firm adhesion of eosinophils to TNFa- and
IFNg-treated HUVECs by a4 and b2 integrins. This is
seen even under conditions of shear flow where tran-
siently tethered eosinophils become arrested (Kitayama
et al., 1998).

Similar mechanisms of adhesion occur in vivo al-
though the relative contribution of CCR3 and VLA-4 to
eosinophil migration appears to be variable and is prob-
ably related to species, stimuli, and differences in spec-
ificity of blocking antibodies. Using ovalbumin-sensi-
tized mice, Nakajima et al. (1994) documented that
allergen challenge resulted in an increased expression of
VCAM-1 by endothelial cells and coincident pulmonary
eosinophilia. Moreover, by using neutralizing antibod-
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ies, that effect was shown to be due to an interaction
between VLA-4 on the eosinophil and endothelial cell
VCAM-1 (Nakajima et al., 1994). More contemporary
experiments also have implicated ICAM-1 in eosinophil
recruitment. An example is provided by Chin et al.
(1998) who found that anti-ICAM-1 attenuated by .70%
the accumulation of eosinophils into the bronchial lu-
men of allergen-challenged sensitized mice. That finding
was subsequently confirmed in ICAM-1 knockout ani-
mals (Broide et al., 1998b). However, a study using
P-selectin/ICAM-1 double-mutant mice found that the
recruitment of eosinophils into the peritoneum was in-
hibited by only 62%, whereas the simultaneous admin-
istration of anti-VCAM abolished the eosinophilia
(Broide et al., 1998a). Thus, P-selectin, VCAM-1, and
ICAM-1 all appear to be important for the adhesion
and/or subsequent induction of peritoneal eosinophilia
in vivo in the mouse.

In guinea pigs, cutaneous eosinophilia in response to a
range of stimuli including LTB4, PAF, and C5a des arg is
inhibited by anti-CD18 neutralizing antibodies (Teixeira
et al., 1994a; Macari et al., 1996). Similarly, airway
hyperresponsiveness, the LPR, and the associated infil-
tration of eosinophils into the tracheal wall and nasal
mucosa that follows allergen challenge of ovalbumin-
sensitized guinea pigs or naı̈ve animals given IL-5 is
blunted by anti-VLA-4 antibodies (Terada et al., 1996;
Sagara et al., 1997; Kraneveld et al., 1997). Thus, com-
parable mechanisms of eosinophil adherence apply in
the skin of guinea pigs.

Human investigations have provided evidence that
adhesion molecules might play a central role in pulmo-
nary eosinophil recruitment. Several independent stud-
ies have established that ICAM-1 and HLA-DR are in-
duced on eosinophils present in the BAL fluid and
sputum of asthmatic subjects along with an up-regula-
tion of CR3 and reduced expression of L-selectin (Hansel
et al., 1991a; Kroegel et al., 1994a; Mengelers et al.,
1994). In addition, bronchial biopsies of asthmatic sub-
jects showed increased expression of CR3, LFA-1, and
VLA-4 within the eosinophil-rich mucosa and submu-
cosa, and increased expression of ICAM-1, VCAM-1, and
E-selectin upon the luminal membrane of the endothe-
lial cells (Ohkawara et al., 1995). Those data are consis-
tent with an activated eosinophil phenotype and suggest
that eosinophils could interact with T lymphocytes lead-
ing to immunomodulation and cell activation. Similar
data have been generated experimentally in Nippos-
trongylus brasiliensis-infected mice where eosinophils in
the BAL fluid show increased expression of ICAM-1,
LFA-1, and VLA-4 (Watkins et al., 1996).

3. Transmigration and Chemotaxis. In vitro, a number
of stimuli have been identified that are potent and ef-
fective eosinophil chemotaxins and the most notable of
these are PAF, LTD4, C5a, IL-2, and RANTES (see Table
17). However, of particular interest has been the dem-
onstration that the CC chemokines eotaxin and

eotaxin-2 are selective eosinophil chemoattractants al-
though their potency is less than the aforementioned
stimuli (Forssmann et al., 1997). In the presence of IL-5
(or IL-3/GM-CSF), eotaxin and PAF promote the migra-
tion of eosinophils across Matrigel membranes (to sim-
ulate the basement membrane) by a mechanism inhib-
ited by antibodies against CD29 and CD18, implicating
b1 and b2 integrin adhesion molecules, respectively
(Okada et al., 1997). Migration is not seen in the absence
of hematopoietic cytokines which has led to the hypoth-
esis that directional migration of eosinophils into tissue
requires both a specific chemoattractant, such as
eotaxin, and an activating cytokine that also enhances
eosinopoeisis, such as IL-5 (see below). Other studies
have found that the migration of primed eosinophils
across an intestinal epithelial cell line, T84, in response
to PAF is dependent on VLA-4, CD11b, and ICAM-1
(Resnick et al., 1995) while PAF-induced migration
across IL-1-activated endothelium is inhibited by anti-
VLA-4 (Ebisawa et al., 1994).

Detailed investigations of the mechanism(s) of eosin-
ophil accumulation following allergen challenge of
ovalbumin-sensitized guinea pigs have identified
eotaxin as a major chemotactic factor that is present in
the BAL fluid and lung (Jose et al., 1994a,b). Eotaxin
also has been implicated in IL-4-, but not TNFa- or
LTB4-, induced eosinophil accumulation in rat skin by
use of neutralizing antieotaxin antibodies (Sanz et al.,
1998). A comparison of eotaxin release into the lung and
BAL fluid with the extent of eosinophil accumulation in
tissue revealed parallel increases during the first 6 h
after allergen challenge. However, although eotaxin lev-
els then declined, eosinophil numbers remained con-
stant and BAL levels were increased. It has been spec-
ulated that eotaxin may be rapidly degraded in tissue
but not in the BAL fluid, thereby creating a concentra-
tion gradient for the attraction of eosinophils into the
airway lumen (Humbles et al., 1997). An additional ac-
tivity attributed to eotaxin is a rapid and selective re-
lease of eosinophils and their progenitors from the bone
marrow by a mechanism that is markedly enhanced by
IL-5 (Palframan et al., 1998a). Thus, eotaxin may be
involved both in the egress of eosinophils from the bone
marrow as well as their subsequent recruitment into
tissues.

Other indirect evidence that could support a role for
eotaxin in eosinophil migration is provided from histo-
logical studies. Ishi et al. (1998) have reported that
exposure of rats to ozone induces large increases in the
expression of eotaxin mRNA transcripts and the recruit-
ment of eosinophils into the BAL fluid. Comparable data
also are available from human studies. Indeed, the num-
ber of cells expressing eotaxin mRNA transcripts is in-
creased in the epithelial and subepithelial layers of in-
dividuals with chronic sinusitis (Minshall et al., 1997). A
comparison of the levels of epithelial/endothelial cell-
associated eotaxin and eosinophil CCR3 mRNA tran-
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scripts demonstrated significantly enhanced expression
in biopsies obtained from asthmatic patients when com-
pared to normal individuals (Ying et al., 1997). Interest-
ingly, there was a highly significant inverse correlation
between eotaxin mRNA-positive cells and the PC20 to
histamine (Ying et al., 1997).

In addition to eotaxin, a number of other chemoattrac-
tants have been implicated in eosinophil recruitment.
Lukacs et al. (1996a) have shown that MIP-1a and RAN-
TES are produced in murine lung following allergen
challenge and that a homogenate of that lung tissue
induces eosinophil chemotaxis ex vivo by a mechanism
inhibited by neutralizing antibodies to those chemo-
kines. Similarly, the chemotaxis induced by a lung ho-
mogenate prepared from Toxocara canis-infected rats
was shown to be mediated by PAF, LTB4, and IL-5
(Okada et al., 1996), whereas BAL fluid from asthmatic
patients with birch pollen allergy evoked eosinophil che-
motaxis that was inhibited by anti-RANTES and anti-
IL-5 antibodies (Venge et al., 1996). Collectively, those
findings are consistent with human studies where a

significant influx of eosinophils, basophils, and mononu-
clear cells into the nasal mucosa has been reported after
RANTES challenge that induces a clinically symptom-
atic response (Kuna et al., 1998).

In general, the most effective chemotaxins are those
acting through G protein-linked receptors while the cy-
tokines IL-3, IL-5, and GM-CSF seem predominately to
be involved in eosinophil priming (see VI.C). This two-
step model of eosinophil chemotaxis has been demon-
strated in vivo. Injection of IL-5 into guinea pigs in-
creases the circulating levels of eosinophils and,
although inactive itself, primes the ability of LTB4 and
eotaxin to promote cutaneous eosinophilia (Collins et al.,
1995). Similarly, intranasal and intradermal induction
of eosinophilia by eotaxin is observed in IL-5 transgenic
mice but not in wild-type animals (Rothenberg et al.,
1996). Moreover, IL-5 alone is unable to evoke cutaneous
eosinophilia in sensitized BALB/c mice but effectively
primes for IL-1b-, IL-4-, TNFa-, RANTES-, and MIP-1a-
induced recruitment (Satoh et al., 1997). Thus, the prim-
ing of circulating eosinophils in diseases such as atopic

TABLE 17
Eosinophil chemoattractants

Stimuli Potency Reference(s)

Lipids
PAF High Wardlaw et al. (1986); Sigal et al. (1987); Tamura et al. (1987); Czarnetzki and Csato

(1989); Kurihara et al. (1989); Martins et al. (1989); Little and Casale (1991); Sun et al.
(1991); Foster et al. (1992); Numao and Agrawal (1992); Fukuda et al. (1992); Miyagawa
et al. (1992); Warringa et al. (1992b); Towney et al. (1994); Elsner et al. (1996a); Erger
and Casale (1996); Schweizer et al. (1996)

LTB4 Low (human)/ Czarnetski and Mertensmeir (1985); Czarnetzki and Rosenbach (1986); Czarnetzki and
Medium (guinea pig) Csato (1989); Coffier et al. (1991a); Maghni et al. (1991); Ng et al. (1991); Taylor et al.

(1989, 1991); Sehmi et al. (1992a); Kim et al. (1994); Spada et al. (1994)
LTD4 High Spada et al. (1994)
ETEs, HETEs, and
diHETEs

High Morita et al. (1990a); Sehmi et al. (1991); Schwenk et al. (1992); Powell et al. (1995);
Schwenk and Schroder (1995); O’Flaherty et al. (1996a); Czech et al. (1997)

LXA4 Low Soyombo et al. (1994)
Peptides

fMLP Low Ogawa et al. (1981b); Morita et al. (1989b)
C5a High Kay et al. (1973); Klebanoff et al. (1977); Ogawa et al. (1981a); Fischer and Czarnetzki

(1982); Morita et al. (1989b); Elsner et al. (1996a,b)
C3a Medium Daffern et al. (1995)
SP High Wiedermann et al. (1993)
Secretogranin Medium Dunzendorfer et al. (1998)
CGRP ? Manley & Hayes (1989)

Cytokines
IL-3 Low Yamaguchi et al. (1988b); Coeffier et al. (1991b); Warringa et al. (1991); Sehmi et al.

(1992b); Hakansson et al. (1994)
IL-2 High Rand et al. (1991a)
IL-4 ? Dubois et al. (1994); Dubois and Bruijnzeel (1994)
IL-13 ? Horie et al. (1997b)
TGFb ? Luttmann et al. (1998a)
TNFa Low Nagata et al. (1993)

CC chemokines
RANTES High Kameyoshi et al. (1992); Rot et al. (1992); Alam et al. (1993); Dahinden et al. (1994);

Kameyoshi et al. (1994)
Eotaxin Low Jose et al. (1994a,b); Elsner et al. (1996b)
Eotaxin-2 Medium Forssmann et al. (1997)
MIP-1a Low Rot et al. (1992); Dahinden et al. (1994)
MCP-2 Medium Noso et al. (1994); Weber and Dahinden (1995)
MCP-3 High Dahinden et al. (1994); Noso et al. (1994); Elsner et al. (1996b)
MCP-4 High Garcia Zepeda et al. (1996a)
MCP-5 Low Sarafi et al. (1997)

CXC chemokines
IL-8 Low (primed cells) Schweizer et al. (1994)

Lectins
Ecalectin High Matsumoto et al. (1998b)
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dermatitis and allergic asthma may explain their in-
creased sensitivity to a selective number of chemoattrac-
tants that act through G protein-coupled receptors
(Morita et al., 1989a,b; Bruijnzeel et al., 1993a; War-
ringa et al., 1993b).

At present little is known of the biochemical pathways
mediating eosinophil rolling, adhesion, and locomotion.
Chemotaxis resulting from the activation of seven trans-
membrane-spanning receptors is associated with rapid
increases in the [Ca21]i and actin polymerization.
Whether these changes are essential to chemotaxis is
equivocal; thus, Elsner et al. (1996a) have provided ev-
idence that Ca21 fluxes are required for chemotaxis and
actin polymerization, whereas another study showed
that depletion of Ca21 failed to effect chemotaxis and
actually enhanced actin polymerization (Schweizer et
al., 1996). Recently, caged peptides have been used to
probe the role of calcium-calmodulin and myosin light
chain kinase in eosinophil motility (Walker et al., 1998).
Flash photolysis of polarized eosinophils containing
caged peptides against the aforementioned proteins
with near UV light promptly blocked amoeboid locomo-
tion from which it can be inferred that myosin is in-
volved in this response.

B. Cytolysis, Secretion, and Piecemeal Degranulation

At least three discrete processes have been defined
that result in the release of granule contents from eo-
sinophils: secretion, piecemeal degranulation, and cytol-
ysis (necrosis). Many stimuli have been identified that
promote release by the former two mechanisms includ-
ing opsonized particles, deuterium oxide, immunoglobu-
lins, metazoan parasites, Sepharose beads, and various
proinflammatory mediators and cytokines such as PAF,
fMLP, and complement (Winqvist et al., 1984; Capron
and Capron, 1987; Gorski et al., 1988; Kroegel et al.,
1988, 1989c, 1990; Abu Ghazaleh et al., 1989; Carlson et
al., 1991,1992; Kita et al., 1991a; Takafuji et al., 1994;
Kaneko et al., 1995a; Munoz et al., 1995; Horie et al.,
1996). In addition, although ignored for many years, a
possible role for eosinophil cytolysis in the genesis of
inflammatory lesions is being considered (Erjefalt et al.,
1996, 1997a,b). In the succeeding sections, the main
proteins stored within eosinophil granules and their
characteristics are described, along with the current
understanding of the morphological, biochemical, and
electrophysiological basis of granule protein release.

1. Granule Proteins

a. MAJOR BASIC PROTEIN. MBP is a 13.8-kDa arginine-
and cysteine-rich polypeptide composed of 117 amino
acids that features alternating hydrophobic and hydro-
philic sequences (Barker et al., 1988; Wasmoen et al.,
1988). This protein was first isolated from guinea pig
eosinophils and shown subsequently to have a very high
tendency to form aggregates (Lewis et al., 1978). How-
ever, despite its prominence in eosinophils, it is also

expressed in placental X cells and placental giant cells
during pregnancy. As the name implies, MBP accounts
for the majority (50%, approximately 250 pg/cell) of the
granule protein found in guinea pig eosinophils and was
so named for that fact (Gleich et al., 1973). However, in
normal human eosinophils, the MBP content lies be-
tween 5 and 10 pg/cell (Ackerman et al., 1983; Gleich
and Loegering, 1984; Peters et al., 1988) and is lower
still in disease states associated with peripheral blood
eosinophilia (Peters et al., 1988). The high number of
arginine residues renders the protein so basic that its
isoelectric point cannot be measured, although it has
been calculated as 10.9 (Hamann et al., 1991). MBP has
been purified and/or cloned from several species includ-
ing humans (McGrogan et al., 1988; Barker et al., 1990;
Hamann et al., 1991; Popken-Harris et al., 1994, 1995;
Li et al., 1995), guinea pigs (Gleich et al., 1973, 1974;
Aoki et al., 1991), rats (Nittoh et al., 1995; Watanabe et
al., 1995), and mice (Larson et al., 1995; Denzler et al.,
1997a), and characterized extensively. Although MBP is
localized to the crystalloid core of the specific granules of
most species (Egesten et al., 1986), an equivalent protein
is present in the homogeneous granules of bovine and
equine eosinophils (Archer, 1963; Duffus et al., 1980).
The gene encoding human MBP is 3.3 kb, composed of
nine upstream exons, five coding exons, and five introns,
and is localized to chromosome 11 (Barker et al., 1990;
Hamann et al., 1991; Li et al., 1995); the murine MBP
gene maps to chromosome 2 (Denzler et al., 1997a).
Detailed molecular biological studies suggest that MBP
is translated as a more neutral preproprotein, to protect
the cell from the toxic actions of the mature form, before
it is taken up into the secondary granules and processed
(Hamann et al., 1991; Popken-Harris et al., 1994). In-
deed, evidence now exists that pro-MBP is converted
into mature MBP within granules during the process of
eosinophil differentiation (Popken-Harris et al., 1998).

Original studies identified a MBP gene promoter, P2,
that generated a 1-kb transcript for prepro-MBP (Bark-
er et al., 1988). However, in 1995, Li et al. (1995) dem-
onstrated that the MBP gene is expressed from two
upstream promoters: a distal promoter, P1, generating a
1.6-kb product, in addition to the previously described
P2 promoter resulting in a smaller transcript. It has
since been established that the long and short forms
arise by differential splicing of alternate MBP mRNA
transcripts from promoters P1 and P2, respectively (Li
et al., 1995). Both cDNAs have identical coding and
39-untranslated regions but differ in their 59 sequences
(Li et al., 1995). Distribution studies have identified
high levels of the 1-kb variant in immature cells such as
those found in the bone marrow, when compared to the
long form of the protein which predominates in differen-
tiated blood eosinophils. Those data are consistent with
differential use of the P1 and P2 promoters as a mech-
anism for regulating MBP expression in eosinophil mat-
uration (Li et al., 1995).
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Little is known of the regulation of the MBP gene
although the detection of mRNA transcripts for GATA-1,
GATA-2, and GATA-3 in eosinophils (Zon et al., 1993)
has led to the proposal that gene transcription in the
eosinophil lineage is regulated by the GATA family of
transcription factors. Indeed, Yamaguchi et al. (1998)
have reported that the GATA-binding proteins can have
a significant impact on the trans-activation of the MBP
promoter. A consensus sequence, conserved between the
human and murine MBP promoter, has been identified
that binds the transcription factors GATA-1 and
GATA-2. Transfection of Jurkat T-cells with a GATA-1
expression vector significantly enhanced MBP promoter
activity while a GATA-2 expression vector was inactive
(Yamaguchi et al., 1998). Interestingly, cotransfection
experiments with both vectors resulted in less trans-
activation than the single GATA-1 construct, suggesting
that GATA-2 can negatively modulate the ability of
GATA-1 to trans-activate the MBP promoter (Yamagu-
chi et al., 1998).

Human recombinant prepro-MBP has been expressed
in CHO cells, purified, and characterized (Popken-Har-
ris et al., 1995). The cDNA for prepro-MBP encodes a
25.2-kDa protein of 222 amino acids. Structurally, pre-
pro-MBP is composed of a typical 15-amino acid hydro-
phobic signal peptide, a “pro” portion—that is 90 amino
acids in length (9.9 kDa)—and MBP itself, which ac-
counts for the majority (117 amino acids) of the polypep-
tide. It is of interest that purified MBP (33 kDa) is
considerably heavier (; 8 kDa) than the molecular mass
predicted from the cDNA, indicating that a considerable
amount of carbohydrate must be added to the polypep-
tide to account for the discrepancy in mass. Indeed,
analysis of purified prepro-MBP has established that S24

and T25 are O-glycosylated. Other likely residues that
could be modified include N86, which is a candidate for
N-linked glycosylation, and S62, to which glycosamino-
glycans can attach (Shikata et al., 1993). Significantly,
glycosylation of prepro-MBP occurs exclusively in the
prepro part of the protein which is consistent with the
knowledge that mature MBP is nonglycosylated (Was-
moen et al., 1988).

MBP has the potential to act in a paracrine manner to
modify the activity of other eosinophils. At low, noncy-
totoxic concentrations (,0.1 mg/ml), MBP is as effective
as secretory IgA in evoking the exocytosis of EDN (Kita
et al., 1995). MBP-induced degranulation is partially
dependent on extracellular Ca21 although it does not
evoke a Ca21 transient in eosinophils. MBP also in-
creases the expression of IL-8 mRNA transcripts and
protein in an actinomycin D-sensitive manner and acts
synergistically with the Ca21 ionophore A23187 in the
production of LTC4 (Kita et al., 1995).

MBP is a potent helminthotoxin and cytotoxin. It also
degranulates basophils and possesses bactericidal activ-
ity. The ability of MBP to damage target cells is due to
its ability to increase membrane permeability through

surface charge interactions rather than by the formation
of distinct pores (Young et al., 1986). It is believed that
the high cationic nature of MBP allows it to bind avidly
to anionic domains on target cells and parasites that
results in perturbation of the lipid bilayer following in-
sertion of apolar residues into the membrane (Wasmoen
et al., 1988).

Recently, a novel homolog of MBP was identified in
human eosinophil granules (Plager et al., 1998). Al-
though it has similar biological activity to MBP, it is
considerably less abundant and does not interact with
MBP in a synergistic manner with respect to its cytotox-
icity (Plager et al., 1998). Its role in eosinophil-driven
histopathology is unknown.

b. EOSINOPHIL CATIONIC PROTEIN. Present within the
matrix of the specific granules are a number of other
proteins including the variably glycosylated, zinc-rich
single-chain peptide ECP, which has a molecular mass
ranging between 16 and 21.4 kDa and shows significant
primary sequence identity across species (Peterson et
al., 1988; Watanabe et al., 1995). Approximately 15 pg of
ECP are present in a single human eosinophil, although
marked variation between individuals is apparent
(Venge, 1993). The isoelectric point of ECP is very basic
(10.8 and 9.85 in humans and rats, respectively) due to
a high content of arginine residues, although it shares
more sequence homology to EDN (66%) and pancreatic
ribonuclease (31%) than to the similarly charged MBP
(Rosenberg et al., 1989a,b; Nittoh et al., 1997). ECP is a
member of a subfamily of rapidly evolving, primate
RNase A multigenes that emerged through gene dupli-
cation in primates 25 to 40 million years ago (Hamann et
al., 1990; Rosenberg, 1995). Accordingly, ECP possesses
ribonuclease activity which has the characteristics of the
“nonsecretory” liver-type (Sorrentino and Glitz 1991),
although it is approximately 100 times less active than
another eosinophil product, EDN (Gleich et al., 1986;
Gullberg et al., 1986; Slifman et al., 1986; Barker et al.,
1989).

Two peaks of ECP activity, denoted ECP-1 and ECP-2,
are resolved following chromatography of human eosin-
ophils on heparin Sepharose (Gleich et al., 1986). En-
doglycosidase F digestion of both activities decreases
their molecular mass, indicating that they feature at
least one complex oligosaccharide (Gleich et al., 1986).
Two forms of ECP also have been identified immunolog-
ically; one of these is found within the granules of rest-
ing (EG11) eosinophils while the other represents a
secreted (EG21) form thought to be derived from acti-
vated cells (Tai et al., 1984). The difference between
these two forms is currently unknown, although it is
possible that structural changes occur to the protein
when it is released by exocytosis. Their possible relation-
ship to ECP-1 and ECP-2 has not been formally ex-
plored.

The gene for human ECP (RNS3) is localized to the
q24-q31 region of chromosome 14 which encodes a pre-
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protein (Olsson et al., 1986; Rosenberg et al., 1989a,b;
Mastrianni et al., 1992) that subsequently is processed
to the form stored in the matrix of the specific granules.
Structurally, RNS3 is ; 1.2 kb and contains a single
intron (230 bases) in the 59-untranslated region and an
intronless coding domain that are characteristic fea-
tures of members of the RNase gene superfamily (Ha-
mann et al., 1990). Rosenberg et al. (1989a,b) have iso-
lated a 725-bp full-length cDNA for human ECP; the
open reading frame encodes a preprotein with a 27-
amino acid “leader” sequence preceding a 133-residue
mature ECP polypeptide which has a mass of 15.6 kDa.
Comparable data also were reported by Barker et al.
(1989). An intronic enhancer element has been identi-
fied within the ECP gene that features a consensus
sequence for NF-AT-1 (Handen and Rosenberg, 1997).
However, it is of interest that no “super shift” was ob-
served in gel-shift assays performed in the presence of
an anti-NF-AT serum, suggesting that a nuclear factor
other than NF-AT may be acting at this site (Handen
and Rosenberg, 1997).

In addition to its weak RNase activity, ECP exhibits a
number of other properties: it is bactericidal, promotes
degranulation of mast cells, and is helminthotoxic
(Gleich et al., 1986; Lehrer et al., 1989). The mechanism
of action of ECP has not been studied in detail but it is
believed to exert many of its effects by creating func-
tional pores or channels that traverse the plasmalemma
of target cells, which are neither voltage- nor ion-sensi-
tive (Young et al., 1986). It is noteworthy that the cyto-
toxicity of ECP is not apparently dependent on its RNase
activity (Rosenberg et al., 1995b). Perhaps the most
notable property of ECP is its ability to elicit the Gordon
phenomenon when injected into rabbits by the i.c.v.
route. This is characterized by the destruction of Pur-
kinje cells and a spongiform change in the structure of
the white matter of the cerebellum, pons, and spinal
cord (Durack et al., 1979; Fredens et al., 1982).

c. EOSINOPHIL-DERIVED NEUROTOXIN. Another member
of the RNase A multigene family localized to the matrix
of the specific granules is EDN. It is now appreciated
that EDN is indistinguishable from another protein,
EPX, that was purified and characterized from human
eosinophils by Peterson and Venge (1983). EDN and
EPX are almost certainly the same protein; they exhibit
identical physiochemical, immunological, and neurotoxi-
cological properties and have equivalent RNase activity
(Slifman et al., 1989). The human form of EDN has been
expressed, purified, and extensively characterized from
eosinophils taken from normal subjects and individuals
with hypereosinophilic syndrome (Durack et al., 1981;
Peterson and Venge, 1983; Newton et al., 1994; L. Sun et
al., 1995), and the crystal structure has been resolved
(Mosimann et al., 1996). Structurally, EDN is an 18.5-
kDa, single-chain polypeptide (Gleich et al., 1986;
Rosenberg et al., 1989b) but has a pI (8.9) approximately
10 to 100 times more acidic than either human MBP or

ECP, due to a relatively lower number of arginine resi-
dues in the protein, which probably accounts for its
reduced cytotoxicity (Barker et al., 1989).

The human EDN gene (RNS2) maps to chromosome
14 in the same region, q24-q31, as RNS3 (Hamann et al.,
1990), while the porcine homolog is found in the p1.3-
p1.2 domain of chromosome 7 (Lahbib-Mansais et al.,
1995). Human RNS2 consists of a noncoding and coding
exon separated by a single intron (Tiffany et al., 1996)
and produces a preprotein (Olsson et al., 1986; Rosen-
berg et al., 1989b; Mastrianni et al., 1992) that is sub-
sequently processed to the stored form found within the
matrix of the specific granules. This genomic structure is
common among mammalian RNases and suggests that
the mechanism(s) of gene regulation is conserved. The
structural similarity between ECP and EDN led Spry
(1988) to propose that these proteins should be renamed
eosinophil RNases. Indeed, since that proposal, the cD-
NAs of EDN and ECP have been shown to be 88%
homologous at the nucleotide level, including the 27-
amino acid signal peptide (Barker et al., 1989; Rosen-
berg et al., 1989b) and 70% identical at the amino acid
level for the “pre” form of both proteins (Gleich et al.,
1986; Barker et al., 1989; Hamann et al., 1991). More-
over, there is marked similarity between the 39- and
59-untranslated regions and the single introns in RNS2
and RNS3 providing compelling evidence for gene dupli-
cation (Hamann et al., 1990). The monoclonal antibody
EG2 recognizes an epitope on EDN endorsing its close
similarity to ECP (Tai et al., 1984).

A functional promoter has been identified within
RNS2 that depends upon the activity of upstream en-
hancer elements located in the first 60 bases of the first
intron (Tiffany et al., 1996; Handen and Rosenberg,
1997). Specifically, a consensus sequence for NF-AT-1
has been found (Tiffany et al., 1996; Handen and Rosen-
berg 1997) that differs from the corresponding site
within RNS3 by a single base (Handen and Rosenberg,
1997). A putative binding domain for AP-1 also has been
identified (Handen and Rosenberg, 1997). In differenti-
ated eosinophilic HL-60 cells, a region in the first intron
contains tandem PU.1-binding sites that are apparently
important for enhancer activity (van Dijk et al., 1998).
Gel-shift analysis and DNA affinity precipitation have
demonstrated that this enhancer domain binds multiple
forms of the transcription factor PU.1. Moreover, point
mutations within the PU.1-binding domain drastically
attenuates intronic enhancer activity, indicating an im-
portant role for the expression of EDN by cells of the
eosinophilic lineage (van Dijk et al., 1998).

Rosenberg et al. (1989b) have isolated a 725-bp cDNA
clone for human EDN. The open reading frame encodes
a 134-amino acid, 15.5-kDa mature polypeptide, and a
27-residue hydrophobic leader sequence at the amino-
terminus akin to that found for ECP. The discrepancy
(;3 kDa) between the predicted mass of EDN and the
purified enzyme is due to glycosylation. The amino acid
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sequence of EDN, deduced from the coding sequence of
the corresponding cDNA, is identical with urinary
RNase (Hamann et al., 1989; Rosenberg et al., 1989b)
and shows a high degree of homology with human, non-
secretory, pancreatic RNase, and angiogenin (Gleich et
al., 1986).

The mean content of EDN of a normal human eosin-
ophil is approximately 10 pg, but marked variation ex-
ists between individuals, and the amount is considerably
lower in cells harvested from patients with various
forms of eosinophilia (Venge, 1993). Despite its name,
EDN is not restricted to eosinophils; it has been identi-
fied in basophils, mononuclear cells, and possibly neu-
trophils, and is probably secreted by the liver (Rosen-
berg et al., 1989b; Ten et al., 1991; Wilde et al., 1992).

Although a relatively poor helminthotoxin and cyto-
toxin EDN, like ECP, is neurotoxic and causes the Gor-
don phenomenon when injected intrathecally into labo-
ratory animals (Durack et al., 1979; Fredens et al.,
1982). This deleterious effect has been linked to its
marked RNase activity but it is not sufficient to account
totally for its neurotoxicity (Sorrentino et al., 1992).
Indeed, the RNase activity of EDN is approximately
125-fold higher than that of ECP (Rosenberg et al.,
1989b), a property conferred by arginine and/or isoleu-
cine residues adjacent to the carboxyl-terminus of the
protein (Rosenberg and Dyer 1997), yet it is considerably
less neurotoxic (Fredens et al., 1982). Thus, the high
level of RNase activity associated with EDN suggests an
additional but, as yet, undefined physiological function.

d. EOSINOPHIL PEROXIDASE. EPO (donor: H2O2 oxi-
doreductase) is a member of the family of haloperoxi-
dases that catalyze the peroxidative oxidation of halides
and pseudohalides (see XII.G). It is localized exclusively
to the matrix of the secondary granules (Egesten et al.,
1986; Enomoto and Kitani, 1986) where, in human eo-
sinophils, it accounts for approximately 5% (;15 pg/cell)
of the total granule protein (Carlson et al., 1985; Venge,
1993). Intriguingly, the expression of EPO is not uni-
form across mammals and in eosinophils derived from
the hyena, rhinoceros, giraffe, birds, and certain cats
(domestic cat, tiger, and lion), it is absent (Undritz et al.,
1956; Presentey et al., 1980). However, the properties
and level of expression of EPO are essentially the same
in eosinophils purified from normal subjects and indi-
viduals with eosinophilia (Bos et al., 1981). A number of
publications have described the purification of EPO from
several species including the horse (Jorg et al., 1982a)
and humans (Olsen and Little, 1983; Bolscher et al.,
1984; Carlson et al., 1985; Olsson et al., 1985; Menegazzi
et al., 1986; Ten et al., 1989), and, more recently, the
cloning and expression of EPO was reported (Sakamaki
et al., 1989; Ten et al., 1989).

Structurally, EPO is a haem-containing protein com-
posed of two subunits: a heavy chain of some 50- to
57-kDa and a 11- to 15-kDa light chain (Olsson et al.,
1985; Ten et al., 1989). Screening of a cDNA library

derived from HUVECs with oligonucleotides obtained
from the partial amino acid sequence of both subunits,
led Ten and colleagues (1989) to identify a clone corre-
sponding to EPO. The nucleotide sequence of the clone
revealed an open reading frame of 2106 bp correspond-
ing to a prosequence, a heavy chain, and a light chain.
The deduced amino acid sequence of the proform is rich
in arginine and leucine, resulting in a highly basic pro-
tein (pI 5 10.9) with a molecular mass of ;79.5 kDa.
Based on these and other studies (Olsson et al., 1985;
Sakamaki et al., 1989), the general consensus is that
EPO is produced as a 79.5-kDa prepro-protein which is
cleaved twice: first, by removal of the 13.8 kDa “pro”
sequence to form an intermediate, and again resulting in
two highly basic fragments corresponding to a light (12.7
kDa, pI 5 10.8) and a heavy (53 kDa, pI 5 10.7) chain
(Ten et al., 1989). These chains may be reassembled to
form native EPO that is composed of a two-chain mono-
mer or, possibly, a four-chain dimer, which would be
similar to the organization of myeloperoxidase (MPO).

A comparison of EPO with neutrophil MPO and other
peroxidases has led to the theory of a peroxidase multi-
gene family that has evolved through gene duplication
in an analogous fashion to ECP and EDN (Sakamaki et
al., 1989; Ten et al., 1989; Hamann et al., 1991). Despite
this, monensin, a proton ionophore which blocks the
sequestration of MPO by the specific granules, does not
inhibit the processing of EPO, indicating that different
mechanisms are required to direct peroxidases into stor-
age organelles (Olsson et al., 1985).

The gene for human EPO has been isolated using
human MPO cDNA as a probe (Sakamaki et al., 1989)
and maps to chromosome 17. Like MPO, it is composed
of 12 exons and 11 introns spanning 12 kb and encodes
for a 715-amino acid protein. The coding sequence of
MPO and EPO is about 72% and 70% homologous at the
nucleotide and amino acid level, respectively; however,
there is little sequence similarity at the 59-flanking re-
gion (Sakamaki et al., 1989; Ten et al., 1989) that fea-
tures promoter elements, suggesting differences in per-
oxidase gene regulation. Information also is available on
the murine EPO gene; it has been mapped to chromo-
some 11 (Denzler et al., 1997b) and shares a consider-
able degree of conservation with its human counterpart
(Horton et al., 1996). Thus, at the nucleotide level hu-
man and murine EPOs are 86% homologous in the pro-
tein-coding region and 66% homologous in the 39-un-
translated region; at the amino acid level they show 90%
identity.

In studies designed to probe the transcriptional regu-
lation of the EPO gene, Yamaguchi et al. (1994a,b)
cloned a 1.5-kb fragment of the human EPO gene up-
stream of the transcription start site into an eosinophil-
inducible leukemic cell line, HL6-C15, and examined
cis-acting elements required for promoter activity. Con-
sensus sequences for the transcription factors Egr-1,
H4TF-1, PuF, UBP-1, CTCF, and GaEII were identified
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(Yamaguchi et al., 1994a,b). Northern blot analysis of
developing cord blood-derived eosinophils has estab-
lished that, in the presence of EL-4-conditioned medium,
EPO mRNA transcripts rise rapidly, peak at day 8 and
still are detectable at day 34, a time when the cells
resemble mature eosinophils (Ten et al., 1991). Those
findings are entirely consistent with the presence of very
low levels of EPO mRNA in peripheral blood eosinophils
from eosinophilic patients (Gruart et al., 1992). Essen-
tially, identical data are available for MBP, whereas the
number of transcripts for EDN and ECP remain rela-
tively constant throughout maturation, implying that
the genes encoding granule proteins are subject to dif-
ferent regulatory constraints (Gruart et al., 1992).

Once released, EPO can elicit a number of effects,
some of which are protective and others potentially de-
structive. In particular, it inactivates the peptido-LTs
(Henderson et al., 1982) and converts LTC4 to all-trans
isomers of LTB4 (Goetzl, 1982). LTB4 is similarly inac-
tivated by EPO but at a much slower rate (Henderson et
al., 1982). EPO also is bactericidal (Bujak and Root,
1974; Jong et al., 1980) and, in the presence of peroxide
and bromide, can catalyze the formation of hypobromous
acid and the highly reactive singlet oxygen (see XII.G). A
number of cells including basophils, mast cells, and neu-
trophils will actively endocytose EPO by utilizing a ve-
sicular transport system. That finding explains the vari-
able detection of EPO in proinflammatory leukocytes
and tempts speculation that the EPO is deliberately
stored until such a time when release is deemed neces-
sary (Dvorak et al., 1985; Zabucchi et al., 1986).

e. CHARCOT-LEYDEN CRYSTALS. The identification and
description of distinct, needle-shaped crystal structures
was originally reported in tissues from a patient with
leukemia (Charcot and Robin 1853) and, subsequently,
from the sputum of individuals with asthma (Leyden,
1872). Now known as Charcot-Leyden crystals, this pro-
tein is localized to the primary granules of mature eo-
sinophils (Dvorak et al., 1988) and also is present in
basophils in a roughly equal amount (Ackerman et al.,
1982; Tanabe et al., 1993). Structurally, Charcot-Leyden
crystals are colorless, hexagonal, and bi-pyramidal, 20 to
40 mm in length and 2 to 4 mm across, and are routinely
found in the feces and sputum of animals with severe
gastrointestinal and respiratory eosinophilia (Zucker
Franklin, 1980). Molecular genetics technology has iden-
tified and sequenced a human full-length cDNA clone for
Charcot-Leyden crystals and has localized the gene that
encodes this protein to chromosome 19 (Mastrianni et
al., 1992). Transcription of the Charcot-Leyden crystals
gene ultimately yields a 17.4-kDa hydrophobic protein
with inherent lysophopholipase activity which repre-
sents the sole protein component (Weller et al., 1980,
1981, 1982, 1984). Charcot-Leyden crystals account for
10% of the total eosinophil protein (Weller et al., 1982,
1984), suggesting that they are functionally important,
although their precise role is far from clear.

f. OTHER GRANULE PROTEINS. In addition to Charcot-
Leyden crystals and the four main cationic proteins de-
scribed in the aforementioned sections, eosinophils also
store a plethora of other enzymes in significantly greater
amounts than are present in autologous neutrophils.
Besides the proteins listed in Table 3, eosinophils ex-
press a-mannosidase, b-galactosidase, b-hexosamini-
dase, histaminase, collagenase, alkaline phosphatase,
matrix metalloproteinase 9 (gelatinase B), MIF, the
serine proteinase esp-1, inducible and endothelial nitric
oxide synthase (iNOS and eNOS, respectively), NGF,
and eotaxin (see Archer, 1963; Makita and Sanborn,
1970; Heyneman, 1975; Zeiger and Colten, 1977; Wil-
liams et al., 1978; Hibbs et al., 1982; Weller et al., 1983;
Davis et al., 1984; Spry, 1988; Weller, 1991; Zanardo et
al., 1997; Ohno et al., 1997; Rossi et al., 1998; Shlopov
and Hasty, 1998; Inoue et al., 1998; Nakajima et al.,
1998; Solomon et al., 1998).

2. Morphological Changes

a. SECRETION. In many secretory cells, the most com-
mon form of degranulation is regulated secretion. This is
believed to be an exocytotic process involving the fusion
of granules with the plasma membrane and the partial
or total extrusion of secretory products. A complicating
factor in studying exocytosis in secretory cells is the
rapidity and transience of the response. Accordingly,
evidence for fusion sites has been difficult to obtain with
conventional chemical fixatives. However, Newman et
al. (1996) adopted an arrest procedure, using tannic acid
(Buma et al., 1984), to “trap” exocytotic events. Tannic
acid, when applied to secretory cells before fixation, ar-
rests exocytosis of granule contents, which causes an
accumulation of fusion sites (Buma et al., 1984). Two
main forms of exocytotic secretion have been described,
simple and compound (Fig. 7), and both types have been
visualized in guinea pig peritoneal eosinophils at the
ultrastructural level (Henderson and Chi, 1985; Dvorak
et al., 1993; Newman et al., 1996). The first and most
simple method involves the fusion of single granules
with the plasmalemma with full incorporation of the
granule membrane. In ultrathin sections and freeze-
fracture replicas of guinea pig eosinophils permeabilized
with streptolysin O and stimulated with Ca21 and
GTPgS, large numbers of crystalloid granules have been
found in a state of arrested fusion with the plasma
membrane (Fig. 8, a and b) when compared to unstimu-
lated cells (Newman et al., 1996). Figure 8, a and b,
shows a single fusion event of a specific granule exhib-
iting the classical omega shape with retention of the
central crystalloid core (see Fig. 8b). In addition to sim-
ple secretion, compound exocytosis also can occur in
eosinophils (Newman et al., 1996). In this case, multiple
granules first fuse intracellularly to form a large degran-
ulation chamber or cavity (see Fig. 8c) that can occupy a
substantial volume of the cytoplasm in some cells (see
Fig. 8d). This structure then fuses with the cell mem-
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brane before discharging its contents in a coordinated
and vectorial fashion.

Two mechanisms have been described that govern the
secretion of granule contents. One of these is called
constitutive or unregulated secretion and is character-
ized by small intracellular vesicles containing secretory
products that are unpackaged and released in a stimu-
lus-independent manner. The other process is known as
regulated secretion and results from the formation of the
degranulation chamber or cavity described above and
the release of stored contents in response to external
stimuli (see Fig. 7). Under resting conditions, the signif-
icance of the constitutive pathway in eosinophils is ques-
tionable as little, if any, granule products are secreted
spontaneously.

b. PIECEMEAL DEGRANULATION. An alternative process
of secretion that commonly is seen in human eosinophils
is piecemeal degranulation. This differs from secretion
in that small protein-containing vesicles bud off from,
and gradually empty, the secondary granules (Tai and
Spry 1981; Torpier et al., 1988; Dvorak et al., 1991,
1992a). Tai and Spry (1981) have studied this phenom-
enon in some detail and reported marked variability in
granule morphology. Some secondary granules are com-
pletely empty or lack only the dense core while, in oth-
ers, partial or complete loss of the matrix is evident.
Thus, it seems likely that the formation of small vesicles
from the specific granules permits, in a stimulus-depen-
dent manner, the selective release of an individual se-
cretory protein from a common storage organelle. In-
deed, piecemeal degranulation provides an explanation
for the ability of anti-IgE and anti-IgG selectively to
release EPO and ECP respectively (Tomassini et al.,
1991).

c. CYTOLYSIS. Histological analysis of tissue samples
from sites of inflammation reveals that many eosino-

phils have undergone cytolytic degranulation, which is
characterized by swollen mitochondria, cell and nuclear
membrane rupture, lysis of chromatin, and the release
of “clusters of free eosinophil granules” into surrounding
structures that are in different stages of dissolution
(Figs. 9 and 10) (Erjefalt et al., 1996, 1997a,b; 1998;
Greiff et al., 1998). Many of these histological features of
cytolysis have been described at the ultrastructural level
and are associated with eosinophilic diseases including
bullous pemphigoid (Dvorak et al., 1982), nasal polypo-
sis (Greiff et al., 1998), eosinophilic pneumonia (McEvoy
et al., 1978), atopic dermatitis (Leiferman et al., 1990),
and asthma (Filley et al., 1982; Beasley et al., 1989;
Jeffery et al., 1992; Ohashi et al., 1992; Laitinen et al.,
1993). In addition, human eosinophil cytolysis has been
produced in vitro in response to secretory IgA and IgG-
bound to Sepharose beads (Weiler et al., 1996) and Ca21

ionophore, A23187 (Fukuda et al., 1985a). However, in
the context of eosinophilic inflammation and the killing
of parasites, this phenomenon was largely ignored until
the middle of the 1990s when Persson and Erjefalt
(1997a,b, 1998) emphasized its potential significance.
Thus, in addition to secretion and piecemeal degranula-
tion, the ability of eosinophils to undergo nonapoptotic
lysis may represent the “ultimate activation” of eosino-
phils in vivo (Persson and Erjefalt, 1997b).

3. Cell-Signaling Events. Although many stimuli are
known to promote the release of preformed granule
products, relatively little is known of the biochemical
basis of this response. In human eosinophils, immobi-
lized immunoglobulins and fMLP effectively evoke de-
granulation; Ca21 ionophore, A23187, similarly is active
on equine eosinophils (Henderson et al., 1983; Abu
Ghazaleh et al., 1989; White et al., 1993; Kaneko et al.,
1995a) and the cell-signaling pathways that could un-
derlie this response have been investigated to some ex-

FIG. 7. Model of constitutive and regulated exocytosis. Upon synthesis from the trans-Golgi network, granules can either be secreted via a
constitutive, or unregulated mechanism, or can enter a regulated pathway of secretion with loss or masking of the constitutive fusion apparatus. After
application of a degranulation-evoking stimulus, granules can additionally be released by the regulated pathway involving either simple or compound
exocytosis (see Fig. 8 for electron micrographs of these phenomena).
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tent. Another approach has been to study exocytosis in
permeabilized eosinophils (Cromwell et al., 1991; Gomp-
erts and Cromwell, 1991), which allows the intracellular
environment to be precisely manipulated and the impor-
tance of putative messenger molecules, enzymes, cofac-
tors, and ions to be assessed directly.

a. STUDIES WITH IMMUNOGLOBULINS, fMLP, AND

A23187. Of the many stimuli that evoke degranulation
of human eosinophils, IgG and secretory IgA, immobi-
lized on to Sephadex beads, are two of the most effective
and have provided a model system with which to exam-
ine the cell-signaling events that could account for the

ultimate fusion of secretory granules with the plasma
membrane. A limited number of studies also have used
fMLP and A23187 as secretagogues. One of the earliest
events that follows ligation of FcaR is the formation of
inositol polyphosphates, indicating that a PLC is stimu-
lued (Kita et al., 1994; Kato et al., 1995). The identity of
the PLC isoform(s) to which FcaR couple is unknown
but, because IgA-induced inositol phosphate accumula-
tion is abolished by PTX (Kita et al., 1994; Kato et al.,
1995), a good case can be made for PLC-b1 and/or
PLC-b2 that are known to couple to one or more mem-
bers of the Gi and/or Go families of heterotrimeric GTP-

FIG. 8. GTPgS/Ca21-induced secretory granule exocytosis in streptolysin O-permeabilized guinea pig peritoneal eosinophils arrested by incubation
with tannic acid. a and c, a single fusion site (giving the classical omega shape found in many secretory systems) and a compound fusion site,
respectively, in cells prepared for freeze-fracture replication. b and d, the same phenomena in ultrathin sections. Note the retention of the crystalloid
core in the single fusion site (b, arrow). Bars: a, 100 nm.Original magnification, 63,0003. b, 100 nm. Original magnification, 55,0003. c, 500 nm.
Original magnification, 58,0003. d, 1 mm. Original magnification, 18,0003. See XII.B.2.a for further details.
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binding proteins (Katz et al., 1992). Another phospholipase,
PLC-g2, which is activated by tyrosine phosphorylation, also
is present in human eosinophils but its role (if any) in Ig-
induced degranulation is unclear.

Secretory IgA promotes the tyrosine phosphorylation
of a number of proteins in human eosinophils with the

most prominent labeling seen of bands migrating at 50,
65, 70, 100, and 115 kDa on SDS-polyacrylamide gels.
The finding that pervanadate, an inhibitor of phospho-
tyrosine phosphatases, and genistein and herbimycin A,
inhibitors of protein tyrosine kinases, promote and sup-
press, respectively, tyrosine phosphorylation and de-
granulation (Kita et al., 1994; Kato et al., 1995) provides
compelling evidence that tyrosine kinase-dependent pro-
cesses play a central role in regulating exocytosis. Fur-
thermore, the general acceptance that regulated secre-
tion in eosinophils is a Ca21-requiring process is
supported by studies with tyrosine kinase inhibitors
that similarly prevent secretory IgA-induced inositol
phosphate accumulation (Kita et al., 1994; Kato et al.,
1995).

Similar results have been obtained with immobilized
IgG. Thus, ligation of Fcg receptors results in activation
of PLC and the tyrosine phosphorylation of essentially
the same proteins that are phosphorylated in response
to secretory IgA, albeit at a slower rate (Kita et al., 1994;
Kato et al., 1995). IgG also is reported to activate rapidly
the src-related tyrosine kinase, fgr (Kato et al., 1995).
This is an important observation since FcgRII, the main
receptor for IgG on resting eosinophils, is devoid of in-
trinsic tyrosine kinase activity (Ravetch and Kinet,
1991; Ravetch, 1994, 1997), suggesting that once bound
by an activating ligand it must recruit directly or indi-
rectly a nonreceptor tyrosine kinase. In this respect it is
intriguing that fgr is known to associate specifically to
FcgRII in human neutrophils (Hamada et al., 1993).

Of primary significance is the insensitivity of Ig-in-
duced tyrosine phosphorylation to PTX (Kato et al.,
1995). At least two explanations could account for this
finding. First, two pathways might be activated in par-
allel that are required for degranulation but only one of
these is sensitive to PTX. Alternatively, a critical ty-
rosine protein kinase may lie upstream of Gi/Go and,
therefore, be insensitive to PTX (Kato et al., 1995).

Although there are marked similarities between the
signaling mechanisms recruited by Fcg and Fca recep-
tors, differences also are apparent. A particularly perti-
nent observation is that PTX abolishes secretory IgA-
induced EDN release, whereas the same response
evoked by IgG is only affected transiently (Kita et al.,
1991a). Indeed, the sensitivity of eosinophils to IgG re-
covers over a period of 16 h despite the continued pres-
ence of PTX (Kita et al., 1991a). Consistent with those
functional results is the finding that PTX catalyzes the
ADP ribosylation of two proteins in eosinophil mem-
branes of 41 and 44 kDa. However, over time the level of
unmodified 44-kDa protein gradually reappears
whereas the amount of unmodified 41-kDa protein re-
mains reduced (Kita et al., 1991a). Thus, those results
suggest that the receptors for IgG and secretory IgA are
coupled to the suppression of degranulation via distinct,
PTX-sensitive G proteins of 44 kDa and 41 kDa, respec-
tively. In this respect, Gomperts and his colleagues iden-

FIG. 9. Eosinophil cytolysis. Allergen provocation of a mucosal eosin-
ophil promotes cytolysis, the release of cfegs and the subsequent deposi-
tion of their contents in intimate apposition to the target tissue. See
XII.B.2.c for further details.

FIG. 10. Cytolysis of a human eosinophil within the airway mucosa
24 h after experimental allergen provocation. Note the chromolytic nu-
cleus and the absence of a cell membrane. Original magnification, 40003.
See XII.B.2.c for further details.
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tified two PTX substrates (Gia3 and Gio) in membranes
prepared from guinea pig eosinophils (Lacy et al., 1995).

A central role for PLA2, AA, and possibility lipoxygen-
ase products in granule protein release from equine and
human eosinophils has been suggested on the basis of
pharmacological experiments (Henderson et al., 1983;
White et al., 1993). In 1983, Henderson and coworkers
reported that the secretion of EPO from equine eosino-
phils evoked by A23187 was inhibited by eicosatet-
raynoic acid, a dual inhibitor of cyclooxygenase and li-
poxygenase, but not by indomethacin. Similarly, the
PLA2 inhibitor, 4-bromophenacyl bromide, attenuated
noncytolytic secretion of EPO effected by exogenous por-
cine purified secretory PLA2. Those two observations led
to the conclusion that Ca21-dependent degranulation
requires the activation of PLA2 and the generation of
lipoxygenase products (Henderson et al., 1993). A simi-
lar situation exists in human eosinophils. Thus, fMLP-
induced EPO release is prevented in cells treated with
the PLA2 inhibitors 4-bromophenacyl bromide and me-
pacrine by a mechanism that is restored by the addition
of exogenous AA (White et al., 1993).

b. STUDIES WITH STREPTOLYSIN O-PERMEABILIZED CELLS.
In streptolysin O-permeabilized guinea pig eosinophils,
the exocytotic response depends minimally on two effec-
tors: Ca21 and a guanine nucleotide (Cromwell et al.,
1991). In cells treated with 2-deoxyglucose and antimy-
cin D, to suppress the endogenous levels of ATP, neither
Ca21 nor GTPgS promote exocytosis as assessed by the
release of b-hexosaminidase. However, in combination,
Ca21 and GTPgS evoke robust degranulation that sug-
gests an intimate interaction between the proteins to
which these two effectors bind (Cromwell et al., 1991).
Since GTPgS is nonhydrolyzable and cannot function as
a phosphoryl donor, the release of b-hexosaminidase
from permeabilized eosinophils must occur indepen-
dently of protein phosphorylation. This is contrary to the
situation that prevails in intact cells, however, where
ATP plays an obligatory role in exocytosis. Collectively,
these data indicate that ATP-dependent phosphoryla-
tion is essential for those processes that govern the early
stages of stimulus-secretion coupling. The absolute re-
quirement for ATP in intact cells is illustrated by the
fact that ATP augments b-hexosaminidase release in
permeabilized cells by increasing the affinity of Ca21

and GTPgS for their respective binding proteins (Crom-
well et al., 1991).

The difference in requirement for ATP between intact
and permeabilized eosinophils is significant because it
provides compelling evidence that a G protein mediates
a stage in the exocytotic process distal to the activation
of PLC (Gomperts, 1990). ATP is required to maintain
the concentration of PtdIns(4,5)P2 in cells and also to
provide, by nucleotide transphosphorylation, sufficient
GTP for G protein activation. Thus, although GTPgS
will activate all G proteins in permeabilized eosinophils,
its ability, with Ca21, to release b-hexosaminidase in the

absence of ATP effectively dissociates products derived
from the hydrolysis of PtdIns(4,5)P2 from exocytosis.
This is so for two reasons. First, any Ins(1,4,5)P3 pro-
duced will rapidly leak out of the cell through the per-
meabilization pores and, in any case, the small amount
of Ca21 that could be released will be readily chelated by
the EGTA in the buffer. Second, any PtdIns(4,5)P2-de-
rived diglyceride will be unable to activate PKC owing to
the absence of ATP (Gomperts, 1990). Collectively, these
facts support the belief that GTP interacts with a novel,
functionally distinct G protein, designated GE, that is
fundamental for the latter stages of regulated secretion
of granule proteins in eosinophils. The identity of GE is
uncertain, but it has been proposed that Rac, or another
Rho-related protein, might fulfill this function (Larbi
and Gomperts, 1997), which would be similar to the
situation that prevails in permeabilized mast cells
(O’Sullivan et al., 1996). Other possibilities include Gai3
(Lacy et al., 1995), which may act as a stimulatory form
of GE in mast cells (Aridor et al., 1993), and Go (Lacy et
al., 1995), which in bovine adrenal chromaffin cells has
been proposed to act as an inhibitory GE (Vitale et al.,
1993).

An important consideration that arises from the pre-
ceding description of exocytisis is how ATP augments
the magnitude of Ca21-/GTPgS-induced degranulation
and the respective affinity of GTPgS for GE and of Ca21

for its binding protein. Studies by Cromwell et al. (1991)
have proposed that this is due to the activation of PKC
by diglyceride cleaved from membrane phospholipids by
PLC or PLD and the subsequent phosphorylation of GE
and the Ca21-binding protein. This sequence of events is
supported by the observation that GTPgS-induced
b-hexosaminidase release is attenuated (but not abol-
ished) by a peptide inhibitor of PKC (Cromwell et al.,
1991).

Magnesium ions inhibit exocytosis in permeabilized
eosinophils driven by Ca21 and GTPgS in the presence
of ATP. Logic dictates that this effect might reasonably
result from competition with Ca21 at a Ca21-binding
site. However, studies designed to assess this possibility
revealed no simple relationship between the EC50 value
of Ca21 to promote secretion and the IC50 value of Mg21

required to suppress this response (Larbi and Gomperts,
1997). Indeed, the mechanism of inhibition is apparently
complex and, to some extent, depends on the stimulus
(Larbi and Gomperts, 1997). Thus, exocytosis evoked by
GTPgS in the presence of 10 mM free Ca21 is inhibited
by Mg21 in a manner consistent with the behavior of a
competitor. This observation led Larbi and Gomperts
(1997) to suggest that inhibition could be due to the well
established ability of Mg21 to retard the dissociation of
GDP from most monomeric G proteins, including Ras
and Rho, thereby suppressing their activation. However,
when exocytosis is initiated by GTPgS in the absence of
Ca21, conditions that require ATP (see above), the in-
hibitory effect of Mg21 is seen over a very narrow con-
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centration range irrespective of the concentration of ei-
ther nucleotide. Based on these results, Larbi and
Gomperts (1997) have concluded that in the presence of
ATP, Mg21 inhibits exocytosis by acting at an undefined
site(s) downstream of those processes activated by GE.

4. Electrophysiological Changes. Compelling evidence
that the secretion of granule contents from human
(Aizawa et al., 1992; Hartmann et al., 1995), guinea pig
(Nusse et al., 1990; Lindau et al., 1993), and equine
(Scepek and Lindau, 1993; Hartmann et al., 1995) eo-
sinophils occurs by an exocytotic process has been pro-
vided from high-resolution capacitance measurements
(an index of membrane area) of cells patch-clamped in
the whole-cell configuration. At a Ca21 concentration
chemically constrained to ;1 mM, the introduction of
GTPgS into a single eosinophil elicits well resolved,
stepwise increases in membrane capacitance (approxi-
mating to the number of crystalloid granules in that
eosinophil), each consistent with the fusion of a single
granule with the plasma membrane (Nusse et al., 1990;
Aizawa et al., 1992; Scepek and Lindau, 1993; Hart-
mann et al., 1995). The magnitude of each discrete in-
crement in capacitance is in remarkable agreement with
the size distribution of granules identified by electron
microscopy, and demonstrates that an exocytotic stimu-
lus promotes sequential, not random, granule-mem-
brane fusion (Nusse et al., 1990; Lindau et al., 1993;
Scepek and Lindau, 1993; Hartmann et al., 1995). More-
over, secretion is a vectorial phenomenon that allows
appropriate discharge of granule contents against the
target cell, tissue or invading organism (e.g., parasite)
and minimizes uncontrolled diffusion that could harm
the host cell (Scepek and Lindau, 1993). In some eosin-
ophils, the clearly resolved, stepwise changes in capaci-
tance are preceded by a gradual, less well defined in-
crease that might represent the fusing of small vesicles
with the membrane (Lindau et al., 1993). Significantly,
in equine eosinophils, at relatively high concentrations
(20 mM) of GTPgS, the magnitude of each stepwise in-
crement in capacitance is markedly increased but at the
expense of the total number of fusion events. This ob-
servations has been taken as evidence for compound
exocytosis (Scepek and Lindau, 1993), as described in
XII.B.2.a, where two or more granules coalesce within
the eosinophil’s interior to form larger “compound”
structures, which then migrate to, and subsequently
fuse with, the cell membrane (Scepek and Lindau, 1993).
Indeed, this idea is entirely consistent with the finding
that the final increase in plasma membrane area result-
ing from the application of high and low concentrations
of GTPgS is in keeping with a cell that features a con-
stant number of secretory granules.

The release of preformed material stored within eo-
sinophil granules after their fusion with the plasma
membrane is made possible by the formation of a dis-
tinct connection between the two structures known as a
fusion pore (Lindau and Almers, 1995). In equine eosin-

ophils and other secretory cells, the fusion pore has a
mean conductance of approximately 200 pS after the
initial fusion event and enlarges as the pore expands to
several nanoSiemens permitting effective and rapid dis-
charge of granule contents (Lindau and Almers, 1995).
The ability of fusion pores to enlarge or expand is regu-
lated by protein phosphorylation and dephosphorylation
although the substrates are unknown (Scepek et al.,
1998). PMA and micromolar Ca21 accelerate the rate of
fusion pore expansion approximately 2-fold although the
amplitude and time course of GTPgS-induced degranu-
lation are unaffected by PMA (Scepek et al., 1998). It is
significant that staurosporine blocks only the effect of
PMA and that fusion pore expansion can occur in the
presence of staurosporine. Thus, Ca21 and PKC regulate
the rate of fusion pore expansion by different mecha-
nisms (Scepek et al., 1998). A broad-spectrum phospha-
tase inhibitor, a-naphthylphosphate, inhibits granule
fusion and retards pore expansion but neither protein
phosphatases 1 or 2A seem to be implicated in regulat-
ing pore expansion rate since selective inhibitors of
those enzymes (canthardin and okadaic acid, respec-
tively) do not mimic the effect of a-naphthylphosphate
(Scepek et al.,1998).

The stepwise increases in membrane capacitance ob-
served in GTPgS-stimulated equine eosinophils can be
about six times larger than those recorded from eosino-
phils of human or guinea pig origin (Hartmann et al.,
1995). However, although this observation is in accor-
dance with the size distribution of secretory granules,
variable or multimodal increases in membrane capaci-
tance are seen in response to GTPgS (Hartmann et al.,
1995). The smallest of these has been attributed to the
fusing of single, or unit, granules with the plasma mem-
brane, which have dimensions (450–500 nm in diame-
ter, 0.7 mm2) largely invariant across species. To account
for this variability, it has been proposed that GTPgS
evokes the exocytosis of multiples of the unit granule
(Elmalek and Hammel, 1987; Hartmann et al., 1995). In
human eosinophils, approximately 2 granules are per-
mitted to fuse with each other whereas in horses 7 to 15
is not uncommon (Hartmann et al., 1995). Fusion of unit
granules to large mature granules also has been used to
explain size differences between mature and immature
granules in PC12 cells (Tooze et al., 1991) and mast cells
(Hammel et al., 1983, 1985, 1988; Alvarez de Toledo and
Fernandez, 1990). The marked discrepancy between
species implies that mechanisms exist that govern or
limit the maximum number of unit granules that fuse to
form the mature granule. It is known that vesicular
traffic and intracellular fusion events are controlled by
small [e.g., rab, ARF (Balch, 1990)] and heterotrimeric
(e.g., Gi/Go) GTP-binding proteins (Leyte et al., 1992),
and, in equine permeabilized eosinophils, Scepek and
Lindau (1993) have reported that GTPgS promotes
granule-granule fusion.
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Scepek and Lindau (1993) also have monitored the in
vitro maturation of human cord blood eosinophils to
establish when exocytotic competence is achieved. After
10 days of culture in medium containing IL-3 and IL-5,
GTPgS evokes exocytosis at a time that coincides with
the appearance of granules, and after 21 days the mag-
nitude of the exocytotic response is equivalent to that
seen in mature peripheral blood eosinophils. Thus, the
machinery for exocytosis is in place and can be recruited
as soon as granules are formed. Time course experi-
ments have demonstrated that eosinophil maturation
from day 10 to day 35 is associated with a marked
reduction in plasma membrane area (from 700–400
mm2) consistent with endocytosis of membrane to form
small secretory vesicles.

The activation of Ca21-activated K1 channels in hu-
man eosinophils has been associated with agonist-in-
duced degranulation (Saito et al., 1997). Submicromolar
concentrations of PAF caused activation of single chan-
nels that were selectively permeable to K1 but not to
Na1 or Cl2 (Saito et al., 1997). Agents that increased
intracellular Ca21 directly, such as thapsigargin and the
ionophores A23187 and ionomycin, produced similar in-
creases in K1 channel activity, suggesting that they
were regulated by Ca21. Two levels of single-channel
activity were observed (10 and 24 pS) that are consistent
with the gating of intermediate and small conductance,
Ca21-activated K1 channels, respectively. The finding
that quinidine blocked both K1 currents and the release
of MBP suggests a causal relationship between the elec-
trophysiological and exocytotic responses (Saito et al.,
1997).

C. Generation of Lipid Mediators

Eosinophils have the capacity to synthesize an array
of phospholipid-derived mediators that have widespread
biological actions. Some of the more important products
include PAF, LTC4, PGE2, TX, and LXA4. The first stage
in lipid mediator biosynthesis is the liberation of free AA
from the sn-2 position of appropriately esterified mem-
brane phospholipids. This reaction is catalyzed by PLA2.
Like many enzymes, PLA2 is a generic term that de-
scribes an ever increasing family of proteins, which are
immunologically distinct and differ in their mode of reg-
ulation and cofactor requirements (Dennis, 1997). The
beginning of 1997 saw the classification and partial
characterization of nine families of PLA2, and two of
those (the so-called type IIA and type IV enzymes, often
refered to as secretory and cytosolic PLA2, respectively)
are expressed by human eosinophils (Debbaghi et al.,
1992; Zhu et al., 1996; Munoz et al., 1997b; Blom et al.,
1998). Secretory PLA2’s are 13- to 15-kDa secretory en-
zymes that require Ca21 in the millimolar range for
activity, are expressed at a level 20 to 100 times greater
in human eosinophils relative to other circulating leu-
kocytes, and are apparently confined to the specific
granules and to phagosomes in cells challenged with

opsonized particles (Blom et al., 1998). In contrast, cy-
tosolic PLA2 is a heavier protein (85 kDa) found exclu-
sively in the cytosol and is catalytically active in the
presence of Ca21 in the low micromolar range. Despite
the apparently selective localization of secretory PLA2 to
eosinophils, the cytosolic isoform is the most abundant
(Munoz et al., 1997b). Although relatively little is known
of the specific functions PLA2 isoforms subserve, a com-
mon finding is that cytosolic and secretory PLA2 both
can translocate to the plasma membrane of eosinophils
upon appropriate stimulation (Munoz et al., 1997b).

1. Platelet-Activating Factor. Two pathways have been
delineated for the formation of PAF. One of these is
believed to maintain physiological concentrations of
PAF for normal cell function (Chung and Barnes, 1991)
and is regulated by choline phosphotransferase that acts
directly on ether-linked phospholipids (Snyder, 1987).
The other biosynthetic route initially involves the re-
lease of lyso-PAF from membrane phospholipids by
PLA2 or an endogenous acyltransferase, which then is
acetylated to form biologically active PAF. In human
eosinophils, an acetyltransferase (1-O-alkyl-2-acetyl-sn-
glycerol-3-phosphocholine:acetyl-CoA acetyltransferase)
has been identified that fulfills this latter function and is
transiently activated (4-fold) in a time-, concentration-
and Mg21/Ca21-dependent manner in response to the
Ca21 ionophore A23187 and certain chemoattractants
such as C5a and fMLP (Lee et al., 1984). The molecular
species of PAF generated by human eosinophils are ap-
parently dependent on the stimulus (Triggiani et al.,
1992). Gas-chromatographic/mass spectrophotometric
analyses of A23187-stimulated eosinophils identified
three molecular species of PAF. The predominant form
was 1-O-hexadecyl-2-acetyl-sn-glycerol-3-phosphocho-
line (16:0) followed by lower amounts of 1-O-octadecyl-
2-acetyl-sn-glycerol-3-phosphocholine (18:0) and 1-O-oc-
tadecenyl-2-acetyl-sn-glycerol-3-phosphocholine (18:1)
(Triggiani et al., 1992). In contrast, fMLP promotes only
the generation of the 16:0 molecular species in an
amount 100 times less than that evoked by the Ca21

ionophore (Triggiani et al., 1992). An enzyme (1-O-alkyl-
2-lyso-sn-glycero-3-phosphocholine:acetyl CoA acetyl
hydrolase) that inactivates PAF by converting it back to
lyso-PAF also has been described in human eosinophils
(Lee et al., 1982) but, unlike the acetyltransferase, it is
not up-regulated by the same stimuli (Lee et al., 1984).
Eosinophils are perhaps the richest source of PAF
among leukocytes. Indeed, both normodense and hypo-
dense eosinophils (purified from individuals with rhini-
tis, asthma and hypereosinophilic syndromes) produce
more PAF than neutrophils (Cromwell et al., 1990).

A number of more physiological/pathophysiological
stimuli have the ability to promote PAF formation in
human eosinophils including unopsonized zymosan
(Burke et al., 1990), C5a (Lee et al., 1984), IgG-coated
Sepharose particles (Cromwell et al., 1990), ECF-A tet-
rapeptides (Lee et al., 1984), and, in hypodense cells, IgE
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(Capron et al., 1988b), the majority of which is retained
(at least initially) intracellularly (Burke et al., 1990;
Cromwell et al., 1990). Equine eosinophils also generate
PAF in response to the Ca21 ionophores, A23187 and
ionomycin (Asmis and Jorg, 1990).

Lee and colleagues (1982) have reported that the ac-
tivity of the acetyltransferase that catalyzes the acety-
lation of lyso-PAF is greater in peripheral blood eosino-
phils purified from donors with eosinophilia than from
normal subjects. However, PAF formation is greater
from eosinophils of normal density than from those of
the hypodense phenotype (Cromwell et al., 1990). To
account for this apparent paradox it is likely that the
activity of the acetylhydrolase which deacetylates PAF
to lyso-PAF is markedly up-regulated in cells of this
phenotype. In addition, Cromwell et al., (1990) noted
that the incorporation of [3H]PAF into phosphatidylcho-
line was greater in low density eosinophils which would
tend to limit the detection of free bioavailable PAF.

2. Cyclooxygenase Products. The initial reactions that
ultimately result in the formation of prostaglandins, TX
and prostacyclin are catalyzed by the enzyme cyclooxy-
genase. Two molecules of oxygen are initially inserted
into AA to form PGG2 which is subsequently reduced to
its 15-hydroxy analog, PGH2, in an endoperoxidase re-
action. Western blotting has established that eosino-
phils constitutively express cyclooxygenase 1 and cyclo-
oxygenase 2 (Lee et al., 1997) although the relative
contribution of these isoforms to prostanoid formation
has not been studied. Cowburn and coworkers (1998)
also have localized both cyclooxygenase isoforms to eo-
sinophils present within biopsies taken from normal
subjects and individuals with asthma.

Depending on the cell type or tissue in question, other
enzymes then catalyze the biosynthesis of specific pro-
stanoids. Of the five principle products that can be
formed following the cyclooxygenation of AA, E-series
prostaglandins (Hubscher, 1975a,b; Bruijnzeel and Ver-
hagen, 1989) and TX (Foegh et al., 1986) are the only
metabolites produced to any significant degree by hu-
man eosinophils. However, the absolute amounts re-
leased are relatively small compared with human mac-
rophages (Foegh et al., 1986) which raises obvious
questions of their importance in allergic reactions. The
possibility that platelet contamination is responsible for
much of the TX release by eosinophils was excluded by
Foegh and colleagues (1986) who obtained comparable
results from resting and stimulated human eosinophils
obtained from the peritoneal cavity of patients undergo-
ing dialysis. In another study, it was reported that the
concentration of PGE2 recovered from the BAL fluid of
two patients with eosinophilic pneumonia was increased
and that this was positively related to the degree of
eosinophilia (Ogushi et al., 1987). Neither PGD2 nor
prostacyclin are primary eosinophil products although a
low level of 6-keto-PGF1a, the initial metabolite of pros-
tacyclin, is elaborated from human peritoneal eosino-

phils (Foegh et al., 1986). Similarly, PGF2a is not syn-
thesized by eosinophils to any appreciable extent
(Parsons and Roberts, 1988) despite its ability to pro-
mote bronchoconstriction and the fact that the plasma
concentration of PGF2a is elevated in asthma (Skoner et
al., 1988).

Guinea pig peritoneal eosinophils synthesize a similar
complement of cyclooxygenase products. Thus, TX and
PGE2 are generated in response to PAF and the Ca21

ionophore A23187 (Hirata et al., 1989; Sun et al., 1989;
Giembycz et al., 1990). The effect of PAF is receptor-
mediated and reduced, in a concentration-dependent
manner by dazmegrel, a TX synthetase inhibitor, with a
corresponding increase in the elaboration of PGE2 indi-
cating that free AA has been diverted to the formation of
other prostanoids (Giembycz et al., 1990). C5a, fMLP,
and PMA also promote the release of TX and PGE2 from
guinea pig eosinophils (Hirata et al., 1989; Sun et al.,
1989; Giembycz et al., 1990).

3. 5-Lipoxygenase Products. Following an appropriate
stimulus, 5-lipoxygenase, which resides in the euchro-
matin region of the nucleus, translocates to the nuclear
membrane (Rouzer and Kargman, 1988; Malaviya and
Jakschik, 1993; Woods et al., 1994, 1995). There it per-
forms two roles in the early stages of leukotriene gener-
ation by a mechanism that requires an additional 18-
kDa protein called FLAP (Dixon et al., 1990). First, it
catalyzes the formation of 5-HPETE by inserting an
oxygen atom into the 5 position of AA; it then transforms
5-HPETE into the unstable epoxide, LTA4. Depending
on species, either LTB4 or LTC4 then is formed under
the influence of LTA4 hydrolase or LTC4 synthetase
respectively. Early studies demonstrated that LTC4 is
the major product of the 5-lipoxygenase pathway in hu-
man (Weller et al., 1983; Ziltener et al., 1983; Borgeat et
al., 1984; Henderson et al., 1984; Shaw et al., 1984;
Verhagen et al., 1984; Bruynzeel et al., 1985a,b), equine
(Jorg et al., 1982b), and murine (de Andres et al., 1990,
1991) eosinophils, and an 18-kDa LTC4 synthetase has
since been identified in human eosinophils by Western
blotting (Penrose et al., 1995). However, guinea pig (Sun
et al., 1989; Hirata et al., 1990) and bovine eosinophils
(Freiburghaus and Jorg, 1990) lack LTC4 synthetase
and, instead, contain LTA4 hydrolase, resulting in the
predominant formation of LTB4. Guinea pig and murine
eosinophils also have the capacity to synthesize 5-HETE
(Turk et al., 1983; Hirata et al., 1989; Sun et al., 1989).

LTC4 synthetase-positive cells are widely distributed
in the airway mucosa of normal individuals and subjects
with asthma with occasional clusters colocalizing with
EG21 eosinophils (Cowburn et al., 1998). Indeed, eosin-
ophils are enriched in LTC4 synthetase and account for
approximately 70% of all LTC4 synthetase-positive cells
(Cowburn et al., 1998). Moreover, the expression of this
enzyme is elevated in aspirin-intolerant asthmatic sub-
jects in whom aspirin and other nonsteroidal anti-in-
flammatory agents promote bronchoconstriction (Spec-
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tor et al., 1979) through the generation of cysteinyl-
leukotrienes (Israel et al., 1993; Austen, 1995; Holgate
et al., 1996). FLAP and 5-lipoxygenase similarly have
been immunolocalized to eosinophils consistent with
their central role in leukotriene biosynthesis (Cowburn
et al., 1998).

The development of mature eosinophils from cord
blood progenitors is associated with a differential ex-
pression of the enzymes that synthesize leukotrienes.
Boyce et al. (1996) reported that immature cultured
progenitors lacked mRNA and protein for LTC4 syn-
thetase after 7 days of culture and did not generate
LTC4 in response to A23187 despite the presence of
cytosolic PLA2, FLAP and 5-lipoxygenase. However, at
day 14, 94% of cells were of the eosinophil lineage and
contained mRNA and protein for LTC4 synthetase, and
responded to A23187 with LTC4 formation (Boyce et al.,
1996). Further maturation of eosinophils up to day 28
then was associated with the enhanced expression of
LTC4 synthetase, FLAP, 5-lipoxygenase, and LTC4
(Boyce et al., 1996).

Little is known of the intracellular mechanism regu-
lating LTC4 synthesis and release. However, it is estab-
lished that LTC4 is initially produced intracellularly
(Owen et al., 1987; Mahauthaman et al., 1988) in human
eosinophils stimulated with A23187, which then is ex-
ported from the cell via a regulated and saturable mech-
anism (Lam et al., 1989). In addition, a preliminary
report implicates cytosolic PLA2 in leukotriene forma-
tion based on the observation that trifluoromethylk-
etone, a selective inhibitor of this enzyme, blocks fMLP-
induced LTC4 generation (Munoz et al., 1997b).

A number of stimuli have been found to stimulate
LTC4 release from eosinophils, the most potent of these
being the Ca21 ionophore A23187 (Table 18). A compar-
ison of A23187-induced LTC4 release from eosinophils
obtained from patients with asthma or related allergic
diseases and normal subjects has produced conflicting

results although, in general, LTC4 release is increased
in asthma (Taniguchi et al., 1985; Kauffman et al., 1987;
Hodges et al., 1988; Schauer et al., 1989, 1990, 1995;
Wang et al., 1989; Aizawa et al., 1990; Kohi et al., 1990;
Roberge et al., 1990; Bruijnzeel et al., 1993b; Laviolette
et al., 1995; Shindo et al., 1996). It is possible that
differences in sensitivity to A23287 reflect changes in
the density profile of eosinophil populations (Weller,
1993), suggesting that they have been exposed in vivo to
priming agents. Indeed, a number of studies have re-
ported that hypodense eosinophils secrete larger quan-
tities of LTC4 than normodense cells following A23187
stimulation (Hodges et al., 1988; Roberge et al., 1990;
Schauer et al., 1990; Bruijnzeel et al., 1993b). In addi-
tion, A23187-induced LTC4 generation in vitro is en-
hanced by PAF (Schauer et al., 1990; Shindo et al.,
1996), fibronectin (Yoshida et al., 1995), and IL-3/IL-
5/GM-CSF (Laviolette et al., 1995) in eosinophils ob-
tained from asthmatic subjects but not from normal
individuals.

4. 12-Lipoxygenase Products. 12-Lipoxygenase was
identified in murine eosinophils in 1983 (Turk et al.,
1983) and this was subsequently confirmed (Nakamura
et al., 1995). It has been suggested that following the
formation of 12-HPETE from AA, a glutathione peroxi-
dase may catalyze the production of 12-HETE (Spector
et al., 1988). However, although 12-HETE is produced
by both murine (Turk et al., 1983; Brash et al., 1985) and
porcine eosinophils (Brash et al., 1985), it is not a major
metabolite (Spector et al., 1988). 12-HETE is not well
studied but it may be chemotactic for eosinophils (Goetzl
et al., 1977; Rand et al., 1982).

5. 15-Lipoxygenase Products. Eosinophils are unique
granulocytes in that they express catalytically active
amounts of 15-lipoxygenase, in addition to 5-lipoxygen-
ase (Sigal et al., 1988b,c). It has been proposed that
15-lipoxygenase might exist in multiple forms (Izumi et
al., 1991) although no differences have been found be-

TABLE 18
Stimuli causing the induction and/or enhancement of LTC4 release from eosinophils

Stimuli Potency Enhancing Factor Reference(s)

A23187 High PAF, PMA, TNFa, IL-3, IL-5,
GM-CSF, monocyte-derived
factors, coculture with
endothelial cells

Jorg et al. (1982b); Weller et al. (1983); Ziltener et al. (1983);
Borgeat et al. (1984); Henderson et al. (1984); Shaw et al.
(1984); Verhagen et al. (1984); Bruynzeel et al. (1985a,b);
Dessein et al. (1986); Silberstein et al. (1986); Elsas et al.
(1987); Owen et al. (1987); Rothenberg et al. (1987, 1988, 1989);
Roubin et al. (1987); Mahauthaman et al. (1988); Tamura et al.
(1988); Howell et al. (1989); Burke et al. (1990); Fabian et al.
(1992a); Nagata et al. (1995b)

Opsonized zymosan Low fMLP, PAF Bruynzeel et al. (1985a, 1987); Kauffman et al. (1987);
Mahauthaman et al. (1988); Burke et al. (1990)

fMLP Low TNFa, IL-3, IL-5, GM-CSF Fitzharris et al. (1986); Owen et al. (1987, 1991); Takafuji et al.
(1991, 1992, 1995); White et al. (1993)

Inhibited by NGF Takafuji et al. (1992)
PAF Low Weller et al. (1983); Kajita et al. (1985); Bruynzeel et al. (1986,

1987); Tamura et al. (1988); Miyagawa et al. (1992); Dent et al.
(1998)

IgG-coated particles Low Shaw et al. (1985)
IgG Aspergillus fumigatus antigen

immune complex
Low Cromwell et al. (1988)

IgG/IgE binding to schistosomula Low Moqbel et al. (1990a)

278 GIEMBYCZ AND LINDSAY

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


tween the enzyme in human lung or reticulocytes (Sigal
et al., 1992). Unlike 5-lipoxygenase, which prefers free
AA as substrate, mammalian 15-lipoxygenase will oxy-
genate, in addition, linoleic acid, polyenoic acids esteri-
fied in phospholipids, and even more elaborate lipid
complexes such as lipoproteins and biomembranes
(Jung et al., 1985; Kuhn et al., 1990; Ford-Hutchinson,
1991; Belkner et al., 1993). Eosinophils also have been
reported to preferentially synthesize 13-HODE from li-
noleic acid (Engels et al., 1996). A FLAP-like docking
protein is not required for 15-lipoxygenase activity
(Brinckmann et al., 1998).

Human eosinophil 15-lipoxygenase is constitutively
expressed by eosinophils and exists predominantly (75–
90%) as a cytosolic enzyme (Sigal et al., 1988c; Brinck-
mann et al., 1998) expressed in close apposition to the
plasma membrane (Brinckmann et al., 1998). It has
been purified to electrophoretic homogeneity from hu-
man eosinophils (Sigal et al., 1988b,c) and the same
enzyme from human reticulocytes has been cloned (Sigal
et al., 1988a) and expressed in eucaryotic cells. The
reticulocyte variant is a 70-kDa protein that is distinct
from, but shares homology with, other lipoxygenases,
and is now recognized as a member of the LTA4 syn-
thetase family of proteins (MacMillan et al., 1994). In
the presence of phosphatidylcholine or Ca21, 15-lipoxy-
genase is stimulated whereas ATP competitively blocks
enzyme activation (Sigal et al., 1988b). This mode of
regulation differs from the activity of human leukocyte
5-lipoxygenase, which is enhanced by ATP (Rouzer and
Samuelsson, 1985). Immunoelectron microscopy of hu-
man eosinophils has demonstrated an increase in mem-
brane-associated 15-lipoxygenase in response to
A23187. Moreover, RP-HPLC of hydrolyzed lipid mem-
branes resolved 15-HETE in an amount that was signif-
icantly greater than that present in untreated eosino-
phils (Brinckmann et al., 1998). Significantly, 15S-
HETE dominated over the corresponding 15R antipode,
indicating that it was formed by 15-lipoxygenase and not
nonenzymatically (Brinckmann et al., 1998).

A histological study of biopsies obtained by fiber-optic
bronchoscopy has localized 15-lipoxygenase-immunore-
active cells to the airway submucosa of normal and
asthmatic subjects (Bradding et al., 1995). The majority
(85%) of the cells was eosinophils and the number was
elevated in tissue taken from asthmatic individuals
(Bradding et al., 1995). Those data are consistent with
the localization of the 15-lipoxygenase gene to human
eosinophils and confirms that the expression of this gene
displays a restricted tissue/cell specificity. It is of inter-
est that the 59-flanking region of the 15-lipoxygenase
gene contains a cluster of three binding sites for the
GATA family of transcription factors (O’Prey and Har-
rison, 1995), providing further support for the latter in
eosinophil gene regulation (see Zon et al., 1993;
Yamaguchi et al., 1998).

The lipid intermediate 15-HPETE is the primary
product produced following the hydroperoxidation of AA
acid by 15-lipoxygenase and can be converted subse-
quently into a number of biologically active mediators
including 15-HETE. Studies by a number of investiga-
tors have found that the level of 15-HETE produced by
human eosinophils or by purified eosinophil 15-lipoxy-
genase is 100 to 300 times higher than that found in
neutrophils, endothelial cells, fibroblasts, and HL-60
cells (Sigal et al., 1988b; Holtzman et al., 1989; Morita et
al., 1990a). Those findings support the results of other
experiments where 15-HETE and additional 15-lipoxy-
enase products were identified as the predominant eico-
sanoids found in human eosinophils (Maas et al., 1981;
Turk et al., 1982; Henderson et al., 1984; Brash et al.,
1985; Smith et al., 1987; Nadel et al., 1991). Murine
eosinophils also produce 15-HETE (Turk et al., 1983).

Other AA-derived 15-lipoxygenase products that have
been identified in human, porcine, and murine eosino-
phils include the dihydroxyeicosatetraenoic acids, 8,15-
diHETE and 14,15-diHETE (Maas et al., 1981; Turk et
al., 1983; Henderson et al., 1984). Additionally, 5,15-
diHETE and the lipoxins also may be produced by the
sequential action of 59- and 159-lipoxygenases (Holtz-
man, 1991).

6. Lipoxins. In eosinophil-rich granulocytes stimu-
lated with A23187, the initial stages of lipoxin formation
involve the sequential lipoxygenation of free AA by 15-
and 5-lipoxygenase that produce 15-HPETE and 5,15-
diHPETE, respectively. LXA4, but not LXB4, is subse-
quently produced via the formation of a 5(6)-epoxide
tetraene intermediate (Serhan et al., 1987). Why eosin-
ophils fail to synthesize LXB4 is not understood but this
may simply reflect the activities of the endogenous li-
poxygenases; alternatively, LXB4 may normally be
formed from intercellular interactions between eosino-
phils and other leukocytes (Weller, 1993).

Steinhilber and Roth (1989) also have reported that
AA- and HETE-treated eosinophils generate another se-
ries of lipoxins when exposed to A23187 that they named
LXC4, LXD4, and LXE4. These “new” members also are
believed to result from sequential lipoxygenation of AA
by 5- and 15-lipoxygenase and an additional enzyme,
glutathione-S-transferase. Thus, LXC4, like LTC4, con-
tains glutathione and is formed via conjugation of a
5(6)-epoxide tetraene intermediate. LXD4 and LXE4 are
produced by sequential peptidolytic cleavage of the glu-
tathione moiety in a manner analogous to the formation
of LTD4 and LTE4 by reactions catalyzed by g-glutamyl-
transferase and dipeptidase, respectively. It is notewor-
thy that A23187 preferentially promotes LTC4 forma-
tion in human eosinophils unless AA or HETE are
present, in which case the lipoxins predominate (Stein-
hilber and Roth, 1989).

The level of LXA4 is elevated in the BAL fluid of
asthmatic subjects (Lee et al., 1990) which tempts spec-
ulation that the eosinophil is a potential source.
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7. Lipid Bodies as Sites of Eicosanoid Formation. As
described in the previous sections, the nuclear envelope,
plasmalemma and/or endoplasmic reticulum, are viewed
as primary sites for arachidonyl-containing phospholip-
ids that can be attacked by phospholipases to liberate
free AA. However, evidence accrued over the last decade
has provided increasing evidence that eicosanoid forma-
tion within eosinophils and other leukocytes is further
compartmentalized to specialized intracellular cytoplas-
mic inclusions that have been designated lipid bodies,
and it has been hypothesized that the different sites of
synthesis might relate to different autocrine and para-
crine functions of eicosanoids (Serhan, 1996; Smith et
al., 1996a). Low numbers of lipid bodies are normally
found in eosinophils. However, in inflammatory disor-
ders including asthma and Crohn’s disease and in syn-
dromes associated with hypereosinophilia, lipid bodies
increase in size and frequency (Solley et al., 1976; Weller
and Dvorak, 1985; Weller et al., 1991a; Beil et al., 1995;
Bozza et al., 1997a,b, 1998), providing increased sub-
strate for the liberation of free AA.

Lipid bodies are not simply formed in response to
increased availability of lipid precursors. cis-Unsatur-
ated fatty acids, proinflammatory mediators, such as
PAF, and pharmacological agents that activate PKC all
effectively promote lipid body formation (Weller et al.,
1989, 1991a; Bozza et al., 1996a,b, 1998). In neutrophils
and eosinophils, PAF promotes lipid body formation in a
concentration-dependent manner by a mechanism that
is blocked by apafant and PTX, indicating that activa-
tion of Gi-coupled, cell surface receptors mediate this
effect (Bozza et al., 1996a, 1997b). Moreover, lyso-PAF,
the direct precursor and metabolite of PAF that does not
have efficacy at the PAF receptor, is inactive (Bozza et
al., 1996a, 1997a). Curiously, other agonists that act at
G protein-linked receptors including LTB4, C5a, fMLP,
and IL-8 are without effect (Bozza et al., 1996a), imply-
ing that specific signal transduction pathways need to be
recruited for effective lipid body formation. In this re-
spect, PLC and PKC seem to play a central role as
inhibitors of these enzymes suppress lipid body genera-
tion evoked by PAF and cis-unsaturated fatty acids
(Weller et al., 1991a; Bozza et al., 1996a,b, 1997a, 1998).
In addition, actinomycin D and cycloheximide abolish
induced lipid body formation in eosinophils, indicating a
requirement for new protein synthesis (Bozza et al.,
1996a,b, 1997a). Phosphorylation on tyrosine residues
also is important for PAF-induced lipid body formation
in eosinophils (Bozza et al., 1998). Curiously, this mech-
anism is restricted to cells harvested from individuals
with hypereosinophilic syndrome although sensitivity to
tyrosine kinase inhibitors can be conferred to normal
eosinophils after their culture in a mixture of IL-3, IL-5,
and GM-CSF (Bozza et al., 1998). Thus, lipid body for-
mation can be differentially regulated.

Additional and necessary evidence to support a role of
lipid bodies in localized eicosanoid formation in eosino-

phils derives from several pieces of evidence. Electron
microscopic autoradiography has demonstrated that
[3H]AA is incorporated into lipid bodies where it is es-
terified almost totally in glycerolipids, primarily phos-
phatidylcholine and phosphatidylinositol (Weller and
Dvorak, 1985; Weller et al., 1991a). Furthermore, immu-
nocytochemistry allied with immunoblotting has estab-
lished that many of the enzymes required for AA release
and metabolism are colocalized in lipid bodies including
cytosolic PLA2, 5-lipoxygenase, 15-lipoxygenase, cyclo-
oxygenase, and LTC4 synthetase (Dvorak et al., 1992b,
1994; Weller and Dvorak, 1994; Bozza et al., 1997a,
1998). In U937 promonocytic cells, a number of up-
stream enzymes that are known to regulate cytosolic
PLA2 including ERK-1, ERK-2, and p38 MAP kinase
also have been localized to lipid bodies (Yu et al., 1998).

Significantly, studies with eosinophils and neutro-
phils have demonstrated a positive correlation between
PAF- and cis-unsaturated fatty acid-induced lipid body
formation and the elaboration of cyclooxygenase and
5-lipoxygenase products. Conversely, agents that sup-
press lipid body formation, such as actinomycin D and
cycloheximide, attenuate this response (Bozza et al.,
1996a,b, 1997a). The changes in eicosanoid biosynthesis
appear to be specifically related to the number of lipid
bodies within cells, rather than to changes in the nuclear
pool of eicosanoid-forming enzymes, since identical re-
sults are obtained in enucleated eosinophil cytoplasts
(Bozza et al., 1997a).

Pharmacological experiments have been performed on
the regulation of lipid body formation, given their puta-
tive role in inflammation. In neutrophils, the induction
of lipid bodies by PAF is blocked by the 5-lipoxygenase
inhibitor, zileuton, and the FLAP antagonist MK886
(Bozza et al., 1996a). In contrast, lipid body formation
evoked by cis-unsaturated fatty acids is independent of
5-lipoxygenase but is inhibited by nonsteroidal anti-in-
flammatory drugs such as indomethacin and aspirin.
This effect does not involve cyclooxygenases 1 or 2 be-
cause sodium salicylate, which does not block prostanoid
formation, is equally active (Bozza et al., 1996b).

D. Generation of Cytokines

mRNA transcripts and protein for a plethora of cyto-
kines have been identified in human eosinophils (see
Table 4). However, a comparison of the literature clearly
highlights marked differences between independent in-
vestigations (see below). Perhaps this is not surprising
given that the source (e.g., blood, BAL fluid, tissue) of
eosinophils varies markedly between studies. Moreover,
disease status clearly will have a major impact on the
expression of certain cytokines possibly through the gen-
eration of phenotypically heterogeneous eosinophil pop-
ulations akin to Th1 and Th2 CD41 T lymphocytes orig-
inally described in the mouse.

1. Interleukin-1a. Protein and mRNA transcripts for
IL-1a have been detected in eosinophils obtained from
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hypereosinophilic human donors that are up-regulated
by the phorbol diester PMA (Weller et al., 1993). Studies
with murine eosinophils have shown that IL-1a mRNA
is detected 6 h after treatment with LPS while continued
exposure (18–24 h) of the cells results in extracellular
protein release (del Pozo et al., 1990).

2. Interleukin-2. Both IL-2 mRNA and protein have
been detected in circulating human eosinophils (Bosse et
al., 1996; Levi Schaffer et al., 1996). Using the technique
of immunocytochemistry, Levi Schaffer et al. (1996)
found that 6.8% of eosinophils from atopic asthmatic
individuals exhibited granular staining, whereas the
frequency increased to 36% in severe atopic asthmatic
subjects (Bosse et al., 1996). IL-2 is localized to the
crystalloid core of the secondary granules (Levi Schaffer
et al., 1996) where it is seemingly stored together with
other cytokines and MBP (Fig. 11). Freshly prepared,
unstimulated eosinophils contain approximately 6 pg of
IL-2/106 cells that is reported to increase to 26 pg/106

cells in response to serum-coated Sephadex beads; a
small amount of IL-2 (2 pg/106 cells) also is released
extracellularly (Levi Schaffer et al., 1996).

3. Interleukin-3. Freshly prepared human eosinophils
from nonatopic, nonasthmatic subjects do not express
IL-3 mRNA (Nakajima et al., 1996). However, prolonged
exposure of the same cells to ionomycin (Kita et al.,
1991d), IFN-g (Fujisawa et al., 1994), and IL-13 (Horie
et al., 1997b), as well as VLA-4-dependent binding to
immobilized fibronectin (Anwar et al., 1993; G. M.
Walsh et al., 1995) all have been shown to stimulate the
release of IL-3 indicative of gene induction. In each
investigation, IL-3 was identified indirectly by the dem-
onstration that neutralizing anti-IL-3 antibodies
blocked the enhancement of eosinophil survival. TNFa
and immobilized immunoglobulins also promote IL-3
mRNA expression by a mechanism that is enhanced by
IL-5 (Nakajima et al., 1996).

4. Interleukin-4. A number of independent investiga-
tors have reported that IL-4 mRNA and protein are
expressed in peripheral blood and tissue eosinophils
(Moqbel et al., 1995; Nonaka et al., 1995; Bjerke et al.,
1996; Moller et al., 1996a; Nakajima et al., 1996; Ying et
al., 1997). Experiments aimed at localizing IL-4 protein
have established that it is costored within the electron-
dense crystalloid core of the secondary granules (Moqbel
et al., 1995; Moller et al., 1996a) with IL-2 and GM-CSF
(Fig. 11). In one study, 22% of eosinophils taken from
atopic asthmatic subjects were IL-41 and contained ap-
proximately 108 pg/106 cells (Moqbel et al., 1995). An
examination of skin biopsies obtained from atopic indi-
viduals during the LPR (Moqbel et al., 1995) and from
nasal polyp tissue (Nonaka et al., 1995) suggests that
the inflammation is associated with the infiltration of
IL-4-expressing eosinophils. Thus, Moqbel et al. (1995)
and Nonaka et al. (1995), respectively, demonstrated
that 85% of eosinophils obtained from skin biopsies and
up to 44% of the eosinophils in nasal polyps were IL-41.
Freshly isolated circulating eosinophils purified from
normal donors also constitutively express IL-4 albeit at
a lower level (20–25 pg/106 cells). However, culture of
those cells for 24 h in medium alone, or in the presence
of stimuli (secretory IgA, IgG) that can evoke degranu-
lation, results in the loss of stored IL-4 without a com-
mensurate release into the extracellular medium (Na-
kajima et al., 1996). In contrast, secretory IgA immune
complexes and serum-coated particles increase both IL-4
mRNA expression in (Nonaka et al., 1995) and release
from (Moqbel et al., 1995; Nonaka et al., 1995) eosino-
phils obtained from allergic individuals. The reason for
this discrepancy is unclear although it is possible that
the secreted IL-4 from “normal” eosinophils is, for some
reason, more rapidly degraded by eosinophil-derived
proteinases than the IL-4 released from “allergic” cells
(Nakajima et al., 1996). Intriguingly, IL-5 attenuates
the reduction in IL-4 seen in cells cultured in medium
alone, suggesting that it enhances the biosynthesis
and/or the storage of IL-4 (Nakajima et al., 1996).

The magnitude of IL-4 release from human eosino-
phils clearly suggests that it is of physiological relevance
(Moqbel et al., 1995; Nonaka et al., 1995). It is well
established that IL-4 can enhance the local production of
IgE, up-regulate VCAM-1 expression upon endothelial
cells and induce the local chemotaxis of eosinophils (see
XII.A.3). In addition, a study using mice infected i.p.
with Schistosoma mansoni eggs showed that eosinophil-
derived IL-4 rises rapidly which has lead to the sugges-
tion that it may be required for the priming of T lym-
phocytes and the expression of the Th2 phenotype
(Sabin et al., 1996).

5. Interleukin-5. The hematopoeitic cytotokine IL-5
has been detected at the mRNA and protein level in
blood and tissue eosinophils obtained from patients with
a range of inflammatory diseases. Initial studies were
able to demonstrate IL-5 mRNA in the eosinophils infil-

FIG. 11. Immunogold labeling of embedded intact purified human
eosinophils of IL-2- and IL-4-like immunoreactivity. Note the preferential
distribution of gold particles over the specific granules. Bars: IL-2, 500
nm. Original magnification, 38,0003; IL-4, 500 nm. Original magnifica-
tion, 35,0003. See XII.D for further details.
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trating the mucosa of four patients with coeliac disease
as well as in the circulating cells of three of those indi-
viduals (Desreumaux et al., 1992). Similarly, Broide et
al. (1992) found that 68% of eosinophils recovered from
the BAL fluid of asthmatic subjects following allergen
challenge contained IL-5 mRNA. In other investigations,
IL-5 mRNA and protein have been localized to eosino-
phils found in heart sections from patients with eosino-
philic endomyocarditis (Desreumaux et al., 1993) and in
blood and tissue eosinophils obtained from individuals
with eosinophilic cystitis and hypereosinophilic disease
(Dubucquoi et al., 1994). In contrast to the aforemen-
tioned studies, IL-5 mRNA was not detected in circulat-
ing eosinophils obtained from normal individuals (Na-
kajima et al., 1996) or, surprisingly, from subjects with
Crohn’s disease (Dubucquoi et al., 1994). Thus, subpopu-
lations of eosinophils may exists (Lamkhioued et al.,
1995b) that can be distinguished on the basis of their
cytokine profiles.

Cell localization studies have established that IL-5 is
stored within the crystalloid core of the secondary gran-
ules (Dubucquoi et al., 1994; Moller et al., 1996b) and
can be released following incubation of eosinophils with
IgA, IgE, and IgG immune complexes, or following VLA-
4-mediated adherence to fibronectin-coated plates (Du-
bucquoi et al., 1994; G. M. Walsh et al., 1995).

6. Interleukin-6. IL-6 mRNA is constitutively ex-
pressed in circulating eosinophils obtained from normal
and hypereosinophilic individuals (Hamid et al., 1992;
Melani et al., 1993) where it is stored within the matrix
of the specific granules (Lacy et al., 1998). Hamid et al.,
(1992) have reported that culture of human eosinophils
for 24 h with IFNg significantly increases the elabora-
tion of IL-6 into the surrounding medium; presumably
this effect is the result of the associated increase in the
number of eosinophils expressing IL-6 mRNA and stored
protein. Interestingly, up-regulation of IL-6-like immu-
noreactivity in human eosinophils occurs very rapidly
(within minutes) which might point to an important
action of IFNg in the translation of preexisting IL-6
mRNA (Lacy et al., 1998).

7. Interleukin-10. The inhibitory cytokine, IL-10, is
constitutively expressed in some, but not all, human
circulating eosinophils at the mRNA (Lamkhioued et al.,
1995b) and protein level (Lamkhioued et al., 1995b; Na-
kajima et al., 1996). However, consistent with data ob-
tained for IL-4 (Nakajima et al., 1996), culture of eosin-
ophils for 24 h in medium alone or medium
supplemented with immobilized secretory IgA or IgG
resulted in a loss of intracellular IL-10 in the absence of
extracellular release. Similar experiments performed in
the presence of IL-5 prevented the loss of IL-10 in eosin-
ophils incubated with media and TNFa [but not immo-
bilized secretory IgA or IgG (Nakajima et al., 1996)].

8. Interleukin-12. Neither atopic nor nonatopic indi-
viduals constitutively express mRNA for the p35 or p40
subunits of IL-12 and this is reflected by little, if any,

secreted IL-12 protein (Grewe et al., 1998). However,
significant mRNA and biologically active IL-12 expres-
sion has been observed following culture of eosinophils
with IL-4, GM-SCF, and, to a lesser extent, TNFa and
IL-1 (Grewe et al., 1998). IL-5 also is active in this
respect in some individuals (Grewe et al., 1998). In con-
trast, RANTES selectively up-regulates mRNA for the
p40 subunit of IL-12 without having an effect on p35
message or protein (Grewe et al., 1998). Based on these
data it is logically speculated that eosinophil-derived
IL-12 may switch the immune response from a Th1 to a
Th2-like state (Grewe et al., 1998) although this out-
come is not inevitable since IL-12 can enhance chemo-
kine generation in certain circumstances (Pearlman et
al., 1997). See XI.E for further details.

9. Interleukin-16. In 1996 a “lymphocyte chemotactic
factor” was identified in the supernatants of cultured
eosinophils and was shown, by use of neutralizing anti-
bodies, to be IL-16 (Lim et al., 1996). Constitutive ex-
pression of mRNA transcripts and protein was subse-
quently found in human eosinophils (Lim et al., 1996)
and a more contemporary investigation established that
IL-16 is present in the airways of asthmatic subjects
after histamine challenge, indicating a possible role in
the early infiltration of CD41 T cells (Mashikian et al.,
1998). Similar data have been reported in a murine
model of allergic asthma where IL-16 appears to be
involved in up-regulating IgE production and in airways
hyperresponsiveness (Hessel et al., 1998).

10. Interferon-g. Lamkhioued and colleagues (1995b)
have demonstrated that some eosinophils express
mRNA and protein for IFN-g. By use of double in situ
hybdridization or double immunostaining, the same in-
vestigators reported that eosinophils never coexpressed
IL-5 and IFNg, tempting speculation of different eosin-
ophil phenotypes secreting distinct patterns of cyto-
kines.

11. Tumor Necrosis Factor a. mRNA for TNFa has
been detected in eosinophils present within nasal polyps
(Costa et al., 1993; Finotto et al., 1994), the intestinal
mucosa of patients with necrotizing enterocolitis (Tan et
al., 1993), and the circulation of normal and hypereosi-
nophilic subjects (Costa et al., 1993; Nakajima et al.,
1996). Consistent with these data is the demonstration
of TNFa in circulating eosinophils obtained from hy-
pereosinophilic patients (Costa et al., 1993), where it has
been immunolocalized to the matrix of the secondary
granules (Beil et al., 1993). Moreover, TNFa is sponta-
neously secreted by human eosinophils in a cyclohexim-
ide-sensitive manner, indicating de novo translation of
mRNA (Costa et al., 1993), and this effect is enhanced by
LPS (Takanaski et al., 1994). Curiously, TNFa has not
been found in circulating eosinophils purified from “nor-
mal” individuals (Beil et al., 1993), suggesting that the
blood of subjects with hypereosinophilia contains stimuli
that promote translation of TNFa mRNA transcripts.
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12. Granulocyte/Macrophage Colony-Stimulating Fac-
tor. mRNA transcripts for GM-CSF have been detected in
circulating eosinophils of both normal (Nakajima et al.,
1996) and atopic asthmatic individuals (Moqbel et al.,
1991), although the corresponding immunoreactive pro-
tein has not always been found even after allergen chal-
lenge (O’Sullivan et al., 1996). However, it is reported that
a significant number (45%) of eosinophils recovered from
the BAL fluid of allergen-challenged asthmatic subjects
give a positive signal for GM-CSF mRNA (Broide et al.,
1992; Sullivan and Broide, 1996). Similarly, a related
study found that 30% of eosinophils in tissue sections
prepared from individuals with nasal polyposis ex-
pressed GM-CSF mRNA (Ohno et al., 1991). On balance,
those data might indicate that relatively few eosinophils
are GM-CSF1 in the blood of normal volunteers and
subjects with allergy but that expression increases upon
their migration into tissue where the autocrine produc-
tion of GM-CSF is required to prolong longevity.

Eosinophils obtained from atopic asthmatics contain
about 15 pg/106 of GM-CSF that is localized to, and
apparently stored within, the core of secretory granules
(Levi Schaffer et al., 1995). Moreover, the release of
GM-CSF from eosinophils can be effected by ionomycin
(Kita et al., 1991d), LPS (Takanaski et al., 1994), IFNg
(Moqbel et al., 1991), ligation of CD40 (Ohkawara et al.,
1996), and CD9 (Kim et al., 1997) or following adherence
of eosinophils to immobilized fibronectin (Anwar et al.,
1993; G. M. Walsh et al., 1995).

13. Macrophage Migration Inhibitory Factor. Macro-
phage migration inhibitory factor (MIF) is a proinflam-
matory cytokine secreted by a variety of cells including
human eosinophils (Rossi et al., 1998). Unstimulated
eosinophils do not constitutively secrete MIF but the
phorbol diester PMA and more physiological stimuli
(IL-5 and C5a) are effective secretogogues. PMA-induced
MIF secretion is significantly attenuated by the protein
synthesis inhibitor cycloheximide, and an inhibitor of
PKC, Ro 31-8220. In the context of airways inflamma-
tion, it is significant that the BAL fluid of asthmatic
subjects contains elevated levels of MIF when compared
to that of nonatopic normal volunteers. The possibility
that MIF plays a pathogenic role in eosinophil-based
inflammatory disorders merits investigation.

E. Generation of Chemokines

1. Interleukin-8. Attempts to demonstrate the pres-
ence of IL-8 in human eosinophils have yielded inconsis-
tent data. For example, Yousefi et al. (1995) found that
IL-8 mRNA and protein were constitutively expressed in
eosinophils purified from the blood of normal subjects
and that the latter was elevated in eosinophils obtained
from patients with bronchial asthma and atopic derma-
titis. However, a subsequent investigation failed to ver-
ify the presence of IL-8 mRNA in normal eosinophils and
reported only very low levels of immunoreactive protein
(Nakajima et al., 1996). Despite these marked discrep-

ancies, eosinophils are capable of synthesizing IL-8 in
response to appropriate stimuli. Thus, immobilized se-
cretory IgA or IgG, soluble secretory IgA, and TNFa all
increase IL-8 mRNA copy number and evoke secretion
which is augmented by IL-5 and suppressed by actino-
mycin D (Nakajima et al., 1996). Similarly, ionomycin
promotes a robust secretion of IL-8 from human eosino-
phils, in an amount significantly greater than IL-3 and
GM-CSF, and is accompanied by a cycloheximide-sensi-
tive appearance of IL-8 mRNA (Braun et al., 1993). A
number of other stimuli promote IL-8 release, including
LPS (Takanaski et al., 1994), MBP (Kita et al., 1995)
and, in the presence of cytochalasin, B, C5a, and fMLP
(Miyamasu et al., 1995). C5a-induced IL-8 secretion is
enhanced in eosinophils primed with IL-3 and IL-5
(Miyamasu et al., 1997).

2. Macrophage Inflammatory Protein 1a. Macrophage
inflammatory protein-1a mRNA has been identified in
39 to 91% of circulating eosinophils obtained from pa-
tients with hypereosinophilic syndrome as well as in
most eosinophils found in nasal polyp tissue (Costa et
al., 1993). However, these results contrast with the very
low expression of MIP-1a mRNA in circulating eosino-
phils from normal patients (Costa et al., 1993).

3. RANTES. Human eosinophils have the capacity to
synthesize, store, and secrete biologically active concen-
trations of RANTES. Constitutive expression of mRNA
(and/or protein) has been reported by a number of inves-
tigators (Lim et al., 1996; Ying et al., 1996, Nakajima et
al., 1996), and it has been estimated that atopic individ-
uals contain approximately 7 ng of RANTES/106 blood
eosinophils and that approximately 24% of that is re-
leased in response to serum-coated particles (Ying et al.,
1996). In the context of allergic reactions, it is significant
that a study by Ying and colleagues (1996) found that 7
to 10% and 4 to 17% of eosinophils expressed RANTES
mRNA and protein, respectively, and that this was in-
creased to 22 to 30% and 11 to 20% following in vitro
stimulation (16 h) with IFNg. The expression of
RANTES mRNA also has been observed in sensitized
human subjects. Sequential immunocytochemistry and
in situ hybridization on biopsies from allergen-induced
cutaneous LPRs showed that 55 to 75% of the infiltrat-
ing RANTES1 cells were EG21 eosinophils (Ying et al.,
1996). Eosinophils might, therefore, represent an impor-
tant source of RANTES with relevance to allergic in-
flammation.

4. Eotaxin. Nakajima et al. (1998) have reported that
human eosinophils from normal, nonatopic individuals
express granule-associated eotaxin that is released by a
number of secretogogues including C5a and ionomycin.
The finding that eosinophils also store IL-5 strongly
supports the idea that eosinophil-derived eotaxin and
IL-5 could contribute to the local accumulation of eosin-
ophils to inflammatory loci and to their enhanced sur-
vival.
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F. Generation of Growth Factors

1. Transforming Growth Factor a. Transforming
growth factor a was first identified in eosinophils within
the interstitial tissue adjacent to colonic adenocarcino-
mas and oral squamous cell carcinomas, and subsequent
experiments, measuring mRNA, extended that finding
to 80% of circulating eosinophils in patients with idio-
pathic hypereosinophilic syndrome (Wong et al., 1990).
However, evidence both for (Walz et al., 1993; Brach et
al., 1994) and against (Wong et al., 1990) constitutive
expression of TGFa in eosinophils from normal healthy
individuals has been published, suggesting that factors
other than disease can govern its biosynthesis. In vivo,
TGFa mRNA-expressing eosinophils have been found in
eosinophil-associated wound healing in rabbit (Todd et
al., 1991) and hamster (Wong et al., 1993) skin and in
the hamster cheek pouch mucosa during malignant
transformation (Elovic et al., 1990; Ghiabi et al., 1992).
Similarly, the majority of eosinophils in tissue sections
of nasal polyps express both TGFa mRNA and immuno-
reactive protein (Elovic et al., 1994). Little is known of
the regulation of TGFa synthesis and secretion although
Brach et al. (1994) and Walz et al. (1994) have found
that certain cytokines (IL-3, IL-5, GM-CSF) relevant to
the pathogenesis of Th2-driven immune responses en-
hance TGFa mRNA and protein expression.

2. Transforming Growth Factor b1. mRNA transcripts
and protein for the multifunctional cytokine TGF-b1

have been found in peripheral blood eosinophils of pa-
tients with idiopathic hypereosinophilic syndrome and
asthma (Wong et al., 1991; Ohno et al., 1992, 1996). In
addition, the complementary techniques of in situ hy-
dridization and immunocytochemistry have been used to
localize TGFb1 mRNA and protein to tissue eosinophils
associated with nasal polyposis (Elovic et al., 1994) and
nodular sclerosing Hodgkin’s disease (Kadin et al.,
1993). Those observations have led to the proposal that
eosinophil-derived TGFb1 may contribute to some of the
pathological alterations (thickening of epithelial base-
ment membrame, glandular hyperplasia, stromal fibro-
sis, angiogenesis) observed in nasal polyposis and in the
histogenesis of nodular sclerosing Hodgkin’s disease.
Other abnormalities where eosinophil-derived TGFb1 is
seen include severe asthma, where it is overexpressed in
bronchial biopsies, and in a hamster model of eosinophil-
associated wound healing (Wong et al., 1993). Circulat-
ing eosinophils from normal healthy subjects do not
express TGFb protein (Wong et al., 1991).

3. Platelet-Derived Growth Factor. Asthma and nasal
polyposis can be associated with tissue remodeling,
which include stromal deposition of extracellular matrix
proteins, airways smooth muscle hypertrophy and hy-
perplasia, and subbasement deposition of collagen. Of
the varied mediators that can contribute to this meta-
morphosis, PDGF is believed to be pivotal, and the eo-
sinophil is likely to be a rich source of this growth factor

given the high number present within these tissues.
Indeed, almost all resident eosinophils in nasal polyps
and lung biopsies taken from severe asthmatic sufferers
express mRNA for the B chain of PDGF (Ohno et al.,
1995). Regulation of the PDGF gene is little studied
although the Ca21 ionophore A23187 significantly in-
creases PDGF-B mRNA transcripts and immunoreactiv-
ity in peripheral blood eosinophils (Ohno et al., 1995).

4. Heparin-Binding, Epidermal Growth Factor-Like
Growth Factor. Heparin-binding, epidermal growth fac-
tor-like growth factor (HB-EGF), a member of the EGF
family of growth factors, is a mitogen for fibroblasts and
smooth muscle cells. Powell and colleagues (1993) have
shown by histochemistry that following the induction of
pulmonary hypertension in rats exposed to high oxygen
and normobaric pressure there is eosinophil accumula-
tion and clustering around lung microvessels and a 100-
fold increase in the expression of HB-EGF mRNA tran-
scripts. The possibility that eosinophil-derived HB-EGF
contributes to the thickening of lung microvessels by
stimulating vascular smooth muscle hypertrophy and
hyperplasia has been suggested (Powell et al., 1993).

5. Vascular Endothelial Growth Factor. Horiuchi and
Weller (1997) have demonstrated that freshly prepared
eosinophils from healthy volunteers constitutively ex-
press mRNA and protein for VEGF, which also is known
as vascular permeability factor. VEGF is a multifunc-
tional cytokine existing as four splice variants that exert
a variety of important actions on the vasculature and
endothelium. In particular, VEGF is a mitogen for en-
dothelial cells and a highly potent angiogenic agent in-
volved in tumor and normal physiological angiogenesis.
Exposure of eosinophils to GM-CSF and IL-5 increases
mRNA expression and the extracellular release of VEGF
by a mechanism that is attenuated by the inhibitor of
transcription, actinomycin D. Several pharmacological
agents including a glucocorticoid (dexamethasone), a
protein-tyrosine kinase inhibitor (genistein), and a pro-
tein kinase C inhibitor (chelerythrine) also have been
shown to attenuate gene induction and secretion of
VEGF (Horiuchi and Weller, 1997). Of the four splice
variants of VEGF identified, eosinophils contain tran-
scripts mainly for the 121- and 165-amino acid isoforms.
It has been suggested that cytokine-activated eosino-
phils are an important source of VEGF and might con-
tribute to edema formation at sites of inflammation and
to airways remodeling due to its angiogenic properties
(Horiuchi and Weller, 1997).

6. Nerve Growth Factor. Recent studies have shown
that NGF, a polypeptide originally discovered in connec-
tion with its neurotrophic activity, is found in various
immune organs and leukocytes including eosinophils
where it is stored (see Aloe et al., 1997; Solomon et al.,
1998). Moreover, circulating levels of NGF are elevated
in parasitic infections and in various autoimmune and
allergic diseases (for review, see Aloe et al., 1997).
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G. Activation of the NADPH Oxidase

The NADPH oxidase (EC 1.23.45.3) catalyzes the sin-
gle electron reduction of molecular O2 to superoxide, a
powerful oxidizing and reducing agent (Babior et al.,
1973). In the presence of superoxide dismutase, super-
oxide anions dismutate to H2O2 which subsequently can
be converted into hypobromous acid in the presence of
EPO and bromide (Weiss et al., 1986; Mayeno et al.,
1989; Thomas et al., 1995) (Fig. 12). Alternatively, in the
presence of ferrous ions, superoxide anions and H2O2
interact to form the membrane-perturbing hydroxyl rad-
ical, one of the most unstable oxidizing species known
(see Fig. 12). Other pathways of free radical formation
also have been described including the reaction of super-
oxide anions with nitric oxide to form peroxynitrite
which provides an additional, iron-independent route of
hydroxyl radical formation along with nitrogen dioxide
radicals (see Fig. 12). Hypobromous acid is able to inter-
act with H2O2 to form singlet oxygen (see Fig. 12), the
biological significance of which is currently unclear
(Kanofsky et al., 1988). Activation of the NADPH oxi-
dase and the subsequent production of toxic oxygen rad-
icals are thought to be relevant to eosinophils in host
defense (Butterworth and Thorne, 1993). However, it is
now appreciated that activation of the NADPH oxidase
may be cytotoxic to many mammalian cells, particularly
those of the gut, skin, and lung, and has implicated
eosinophils in the pathogenesis of a number of nonpar-
asitic inflammatory disorders, including Crohn’s dis-
ease, atopic dermatitis, and allergic asthma (Butter-
worth and Thorne, 1993). Indeed, the activity of the
NADPH oxidase is significantly higher in eosinophils
than in other phagocytes (Learn and Brestel, 1982;
Shult et al., 1985; Yamashita et al., 1985; Petreccia et

al., 1987; Yazdanbakhsh et al., 1987a; Sedgwick et al.,
1988; Yagisawa et al., 1996).

Human and guinea pig eosinophils in suspension un-
dergo a rapid and transient activation of the NADPH
oxidase in response to a range of soluble and particulate
stimuli (Table 19). Preincubation of eosinophils with
subthreshold concentrations of PAF, IL-3, IL-5, and GM-
CSF primes the NADPH oxidase to activation by opso-
nized particles (Mabuchi et al., 1992; Tool et al., 1992;
van der Bruggen et al., 1993a) and fMLP (Zoratti et al.,
1992; Nagata et al., 1995b). Recent studies have demon-
strated a similar priming of human eosinophils adherent
to tissue culture plates coated with a range of extracel-
lular matrix proteins (e.g., fibronectin, fibrinogen, colla-
gen, laminin) and fetal calf serum. Under those condi-
tions, the cytokines TNFa and GM-CSF, which are
unable to stimulate the NADPH oxidase in nonadherent
cells, produce a slowly developing and sustained gener-
ation of superoxide anions (Dri et al., 1991; Horie and
Kita, 1994). Moreover, antibodies directed against CD18
and CD11b block this effect (Horie and Kita, 1994),
suggesting a central role for CR3. That conclusion was
confirmed in subsequent studies following the observa-
tion that CD18-mediated adhesion primed eosinophils
for fMLP-induced respiratory burst (Nagata et al.,
1995a) and that antibody ligation of b1 and b2 integrins
promoted the generation of oxygen-derived free radicals
(Laudanna et al., 1993). In addition to CR3-mediated
adhesion, anti-VCAM-1-coated plates were shown to in-
duce eosinophil adherence and NADPH oxidase activa-
tion although the response to fMLP was dependent upon
CD18 (Nagata et al., 1995a). There are no studies con-
cerning the biochemical mechanism of NADPH oxidase
activation in adherent eosinophils and the data in this

FIG. 12. Route of formation of free radicals in eosinophils and other phagocytes following the activation of the NADPH oxidase and subsequent
generation of superoxide anions. See XII.G for further details.
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section focuses predominantly on studies conducted with
nonadherent cells.

In neutrophils, an active NADPH oxidase complex
assembles at the phagocytic and plasma membranes
following activation (Segal and Abo, 1993). At least five
proteins are required for the formation of an active oxi-
dase complex: the membrane-bound cytochrome b558
(consisting of two subunits gp91phox and p22phox) and the
cytosolic proteins p47phox, p67phox, and a small GTP-
binding protein, Rac-1 or Rac-2 (Bokoch, 1994). Re-
cently, two additional components have been identified,
these being the cytosolic protein, p40 phox, which appears
to be associated with p67phox (Wientjes et al., 1993;
Tsunawaki et al., 1994), and a membrane-associated
small GTP-binding protein, Rap1a (Gabig et al., 1995).
Under resting conditions, the cytosolic components exist
as a 240- to 300-kDa oligomer (Park et al., 1992,1994).
Following activation, translocation of these components
to the membrane-bound cytochrome b558 and assembly
of the active oxidase complex is thought to be mediated
by a mechanism involving both protein binding through
SH3 domains and phosphorylation of p47phox (Rodaway
et al., 1990; McPhail, 1994; Park and Ahn, 1995; de
Mendez et al., 1996). In eosinophils, evidence for a sim-
ilar, if not identical, mechanism of oxidase assembly and
activation also is available. Thus, the cytosolic compo-
nents p47phox, p67phox, p40phox, and membrane compo-
nents p22phox and gp91phox have been identified (Segal
et al., 1981; Kuribayashi et al., 1995; Yagisawa et al.,
1996; Zhan et al., 1996), whereas p47phox and p67phox

have been shown to reconstitute NADPH oxidase activ-
ity in cell-free systems prepared from both neutrophil
and eosinophil fractions (Bolscher et al., 1990; Someya
et al., 1991).

At present, little is known of the intracellular mech-
anisms responsible for NADPH oxidase activation in
eosinophils. Previous studies have demonstrated a rapid
and transient increase in both Ins(1,4,5)P3 and [Ca21]i

following exposure of guinea pig and human eosinophils
to LTB4, PAF and fMLP (Kroegel et al., 1991; Perkins et
al., 1995; Wymann et al., 1995). Furthermore, human
eosinophils release DAG following stimulation with op-
sonized particles (Koenderman et al., 1990). However,
the generation of oxygen-derived free radicals is only
marginally suppressed in Ca21-depleted cells, suggest-
ing that an increase in [Ca21]i does not play a major role
(Subramanian, 1992; Perkins et al., 1995; Wymann et
al., 1995). This conclusion is supported by studies show-
ing that LTB4- and PAF-induced NADPH oxidase acti-
vation in guinea pig eosinophils occurs at concentrations
greater than 100-fold higher than those required for
Ca21 mobilization (Kroegel et al., 1989a; Lindsay et al.,
1998c). Similarly, although phorbol diesters are potent
and robust stimulants of oxidase activation (Petreccia et
al., 1987; Rossi et al., 1989; Yoshie et al., 1989; Perkins
et al., 1995), the PKC inhibitors, Ro-31 8220 (Perkins et
al., 1995) and 1-O-hexadecyl-2-O-methylglycerol (Rabe
et al., 1992), only partially inhibit (by 20–30%) agonist-
induced H2O2 release in guinea pig eosinophils, suggest-
ing that PKC is not central to this response. Indeed, in
human eosinophils exposed to opsonised particles, the
rate of oxygen consumption is augmented in the pres-
ence of inhibitors of PKC (van der Bruggen et al., 1993b),
implying that one of more of these enzymes can nega-
tively regulate oxidase activation. Collectively, there-
fore, these data provide persuasive evidence that ago-
nist-induced activation of the NADPH oxidase in
eosinophils is mediated by mechanisms that are largely
independent of intracellular Ca21 and PKC.

The role of PLD in NADPH oxidase activation has so
far proved elusive. Although C5a stimulates PLD in
human eosinophils (Minnicozzi et al., 1990), this is not
observed in guinea pig eosinophils exposed to LTB4 (Per-
kins et al., 1995). Unusually, the latter study found that
butan-1-ol, an inhibitor of PLD, abrogated NADPH oxi-
dase activation. However, it is likely that the action of

TABLE 19
Stimuli that activate the NADPH oxidase in eosinophils

Stimulus Species Reference(s)

LTB4 Human Palmblad et al. (1984)
Guinea pig Maghni et al. (1991); Ng et al. (1991); Rabe et al. (1992); Subramanian (1992); Perkins et al.

(1995); Lindsay et al. (1998a,b,c); Perkins et al. (1995)
PAF Human Kroegel et al. (1989c); Chanez et al. (1990); Mabuchi et al. (1992); Elsner et al. (1995); Zeck

Kapp and Kapp (1995); Wymann et al. (1995); Dent et al. (1998)
Guinea pig Kroegel et al. (1989a); Shute et al. (1990)
Rat Cypcar et al. (1996)

fMLP Human Beswick and Kay (1981); Palmblad et al. (1984); Wymann et al. (1995)
Rat Cypcar et al. (1996)
Guinea pig Kroegel et al. (1990)

C5a Human De Simone et al. (1986b); Elsner et al. (1995, 1996d); Wymann et al. (1995); Zeck Kapp and
Kapp (1995)

RANTES Human Rot et al. (1992); Chihara et al. (1994); Kapp et al. (1994); Elsner et al. (1995)
5-ETE/5-HETE Human Czech et al. (1997)
MCP-4 Human Petering et al. (1998)
IL-8 Human Wymann et al. (1995)
Eotaxin Human Elsner et al. (1996b); Tenscher et al. (1996)
Eotaxin-2 Human Elsner et al. (1998)
Opsonized particles Human Petreccia et al. (1987); Koenderman et al. (1990); Shute et al. (1990)

Rat Cypcar et al. (1996)
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butan-1-ol is due to its ability to elevate intracellular
cAMP, which is known to inhibit the activation of the
NADPH oxidase in eosinophils (see below) (Perkins et
al., 1995).

Experiments with wortmannin suggest that the con-
version of PtdIns(4,5)P2 to PtdIns(3,4,5)P3 by PtdIns
3-kinase is implicated in SOZ-evoked respiratory burst
in IL-5- and PAF-primed eosinophils (Coffer et al.,
1998). It has been proposed that priming is mediated by
the serine/threonine kinase PKB/c-Akt, a downstream
substrate for PtdIns 3-kinase (Coffer et al., 1998). How-
ever, the role of these signal transduction elements in
oxidant production is likely to be species and/or stimu-
lus-specific since wortmannin attenuates eotaxin-in-
duced NADPH oxidase activation in human eosinophils
(Elsner et al., 1996b), but has no affect upon LTB4-
induced H2O2 generation in guinea pig eosinophils (Per-
kins et al., 1995).

A possible role for PLA2 in the stimulation of the
respiratory burst has been advanced based on the dem-
onstration that exogenous AA stimulates H2O2 genera-
tion in guinea pig eosinophils (Lindsay et al., 1998c).
This response is unaffected by inhibitors of cyclooxygen-
ase and 5-lipoxygenase, indicating that AA per se,
rather than TX, a PG(s) or a LT(s), is the causative
mediator. However, the functions of PLA2 and AA in
receptor-mediated NADPH oxidase activation in eosin-
ophils is open to conjecture. Pharmacological studies
using the PLA2 inhibitors mepacrine and 4-bromo-
phenacyl bromide have implicated PLA2 in fMLP-
(White et al., 1993) and SOZ-stimulated (Shute et al.,
1990) superoxide anion generation. However, both in-
hibitors are nonselective and no measurement of AA
release was made. Indeed, a more contemporary inves-
tigation (Lindsay et al., 1998c) found that although the
liberation of [3H]AA from guinea pig eosinophils oc-
curred with a time- and concentration-dependence con-
sistent with a causal role in the generation of H2O2, the
nonselective PLA2 inhibitor mepacrine caused only a
small inhibition of H2O2 generation at a concentration
that abolished [3H]AA release. Thus, based on those
data, PLA2 activation does not seem to be central to the
mechanism of LTB4-induced NADPH oxidase activation
(Lindsay et al., 1998c). Again, it is important to appre-
ciate that differences in species and/or stimulus could
profoundly influence the signaling pathways recruited
for effective oxidant generation.

LTB4 can activate the raf1/ERK pathway in guinea
pig eosinophils by a PKC-independent mechanism
(Araki et al., 1995). Since p47phox features putative MAP
kinase phosphorylation sites, this finding tempts specu-
lation that MAP kinases could play a role in the activa-
tion of the NADPH oxidase. However, the results of
experiments designed to test this hypothesis have
proved negative. Thus, the MEK-1 inhibitor PD098059
does not suppress LTB4-induced oxidant production
from guinea pig eosinophils at concentrations that abol-

ish ERK-1/2 activation (Lindsay et al., 1998b). Similarly,
PD098059 is without effect on SOZ-induced respiratory
burst in PAF- and IL-5-primed human eosinophils de-
spite clear activation of ERK-2 (Coffer et al., 1998).

Pharmacological experiments suggest that protein ty-
rosine kinases play a role in oxidative metabolism
evoked by eotaxin (Elsner et al., 1996b), LTB4 (Lindsay
et al., 1998b), and following adherence of eosinophils to
VCAM-1 (Nagata et al., 1995a). Herbimycin A, an inhib-
itor of nonreceptor tyrosine kinases, attenuates SOZ-
induced respiratory burst in IL-5-, IL-3-, and GM-CSF-
but not PAF-primed human eosinophils (van der Brug-
gen et al., 1998). The identity of the tyrosine kinase(s) is
presently unknown although the LTB4-induced re-
sponse in guinea pig eosinophils appears to be mediated
independently of the activation of members of the src-
related family of tyrosine kinases (Lindsay et al., 1998a).

It has been proposed that the opening of voltage-
sensitive K1 channels might be related to the generation
of superoxide anions by Ca21-mobilizing stimuli based
on the finding that quinidine, a potent inhibitor of volt-
age-sensitive K1 channels, attenuated the activation of
the NADPH oxidase in eosinophils obtained from pa-
tients with hypereosinophilic syndrome in response to
ionophore A23187 (Saito et al., 1995).

H. Apoptosis

Of great importance in determining the number of
eosinophils found in the blood and tissues is the balance
between cell production and cell death (for reviews, see
Simon and Blaser, 1995; Simon, 1997; Simon et al.,
1997b, Walsh, 1997a; Yousefi et al., 1997). In the ab-
sence of cytokines, eosinophil death is thought to occur
in a controlled or programmed manner by a mechanism
known as apoptosis (Yamaguchi et al., 1991; Stern et al.,
1992). This process is distinct from necrosis in which cell
lysis and the uncontrolled release of cellular contents
occurs that may produce harmful actions. Apoptosis is
characterized by specific biochemical and morphological
changes including cell shrinkage, which may involve K1

efflux (Beauvais et al., 1995a), surface blebbing, chro-
matin condensation, and endonuclease-catalyzed DNA
fragmentation. The cell then fragments into discrete
apoptotic bodies that are recognized and engulfed by
monocytes/macrophages following the coordinate bind-
ing, by thrombospondin (expressed by the apoptotic eo-
sinophil), to CD36 and the vitronectin receptor that are
expressed by the phagocyte (Stern et al., 1992, 1996).

Studies conducted primarily in the 1980s convincingly
demonstrated that the survival of human eosinophils in
vitro is greatly enhanced (.10 days) by GM-CSF (Begley
et al., 1986; Lopez et al., 1986; Tai et al., 1991), IL-3
(Rothenberg et al., 1988; Tai et al., 1991), and IL-5
(Begley et al., 1986; Tai et al., 1991) by inhibiting the
natural processes that govern apoptosis (Yamaguchi et
al., 1991). Although the longevity-enhancing cytokines
are predominately T cell-derived, eosinophils provide an
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effective autocrine and/or paracrine source. Thus, the
increased survival of eosinophils adherent to laminin
(Tourkin et al., 1993) and fibronectin (Anwar et al.,
1993, G. M. Walsh et al., 1995) results from VLA4-
mediated release of hematopoeitic cytokines (Anwar et
al., 1993; G. M. Walsh et al., 1995). Similarly, suppres-
sion of the constitutive rate of apoptosis by IFNg (Fuji-
sawa et al., 1994), CD40 (Ohkawara et al., 1996), IL-13
(Luttmann et al., 1996), LPS (Takanaski et al., 1994),
TNFa (Levi-Schaffer et al., 1998), and CD9 (Kim et al.,
1997) is mediated indirectly through the autocrine re-
lease of GM-CSF and, in the case of IL-13, IL-3. In
contrast, TGF-b abrogates the actions of IL-3, IL-5, and
GM-CSF through the induction of apoptosis although
this can be overcome by increasing the concentration of
IL-5 (Alam et al., 1994; Atsuta et al., 1995). It seems
likely that cytokines and, arguably, the processes of
adherence also are likely to affect eosinophil viability in
vivo in certain inflammatory diseases. Indeed, IL-5
mRNA expression is elevated in eosinophils recovered
from the BAL fluid of asthmatic subjects after allergen
challenge (Broide et al., 1992), infiltrating the mucosa in
coeliac disease (Desreumaux et al., 1992) and in the
dermis of individual with atopic dermatitis (Tanaka et
al., 1994).

Evidence is available that CD95 (Matsumoto et al.,
1995; Tsuyuki et al., 1995; Druilhe et al., 1996) and
CD69 (Walsh et al., 1996b) are physiological death re-
ceptors. Freshly purified blood eosinophils express little
if any mRNA or functional protein for CD95 but marked
time-dependent induction is observed following their
culture in the absence of cytokines (Druilhe et al., 1996).
Ligation of CD95, with an activating antibody, induces
apoptosis in both cytokine-deprived and IL-5-stimulated
eosinophils (Matsumoto et al., 1995; Tsuyuki et al.,
1995; Druilhe et al., 1996). However, unlike TGFb,
CD95 seemingly recruits different signal transduction
elements since its apoptotic effect cannot be overcome by
IL-5 (Matsumoto et al., 1995). In vivo studies utilizing
sensitized mice have established that CD95 expression
on, and CD95-mediated apoptosis of, eosinophils in the
BAL fluid is increased following allergen challenge
(Tsuyuki et al., 1995). Furthermore, inhalation of an
anti-CD95 antibody is associated with a reduction in
airway eosinophils, an increase in peroxidase-positive
macrophages, and the subsequent resolution of eosino-
philic airway inflammation (Tsuyuki et al., 1995). Inter-
estingly, apoptosis is induced in murine eosinophils by
neutralizing antibodies against FcgRII (CD32) by a
mechanism dependent upon the expression of CD95 (de
Andres et al., 1997a).

CD69 is not constitutively expressed on freshly puri-
fied eosinophils but is present on BAL fluid eosinophils
obtained from patients with asthma and pulmonary eo-
sinophilia (Nishikawa et al., 1992; Hartnell et al., 1993).
It is likely that the in vivo elaboration of cytokines from
a number of resident lung cells is responsible for the

appearance of this death receptor since CD69 can be
induced in vitro in a time- and concentration-dependent
manner by IL-3, IL-5, and GM-CSF (Walsh et al.,
1996b). In GM-CSF-activated eosinophils cultured on
fibronectin, ligation of CD69, by an activating antibody,
induces apoptosis (Walsh et al., 1996b). This effect is not
secondary to the autocrine release of the apoptotic cyto-
kine TGFb1 despite the knowledge that it is released
from GM-CSF-exposed eosinophils (Walsh et al., 1996b).

Of clinical relevance is the demonstration that glu-
cocorticoids, such as dexamethasone, can promote eosin-
ophil apoptosis (Meagher et al., 1996) and reduce cyto-
kine-induced survival (Cox et al., 1991; Lamas et al.,
1991; Wallen et al., 1991; Hallsworth et al., 1992). Al-
though these effects can be overcome by low concentra-
tions of hematopoeitic cytokines, the fact remains that
this might represent a mechanism by which glucocorti-
coids resolve eosinophilia in a number of inflammatory
diseases such as asthma (Schleimer and Bochner, 1994).

The intracellular second messenger pathways respon-
sible for spontaneous and CD95-mediated apoptosis and
the enhanced cell survival effected by IL-3-, IL-5-, and
GM-CSF are unclear. Investigations conducted in the
early 1990s established that neither actinomycin D nor
cycloheximide affected spontaneous apoptosis of human
cultured eosinophils but effectively inhibited the surviv-
al-promoting actions of hematopoeitic cytokines, sug-
gesting that their antiapoptotic effect is dependent upon
RNA and protein synthesis (Tai et al., 1991; Yamaguchi
et al., 1991). A central role for tyrosine phosphorylation
is suggested from pharmacological experiments with ty-
rosine kinase and tyrosine phosphatase inhibitors
(Yousefi et al., 1994; Simon et al., 1995a, 1998). Thus,
GM-CSF-induced eosinophil survival is inhibited by
genistein, while phenylarsine oxide-induced tyrosine
phosphorylation prevents apoptosis in the absence of
GM-CSF. The finding that IL-5 signals through lyn/syk-
ras-raf1-MEK-ERK (Pazdrak et al., 1995a; Bates et al.,
1996), Jak2-STAT1 (Pazdrak et al., 1995b; van der
Bruggen et al., 1995; Bates et al., 1996), and SHPTP-2
(Pazdrak et al., 1997) strongly implicates tyrosine phos-
phorylation in cytokine-enhanced eosinophil survival.
Further support for that contention was the additional
observations that 1) the tyrosine phosphorylation of lyn,
Jak-2, and ERK by IL-5 was reversed by the apoptotic
cytokine TGFb (Pazdrak et al., 1995c); 2) antisense oli-
gonucleotides to lyn, syk, raf-1, and SHPTP-2 abrogated
the survival-enhancing effect of IL-5 and GM-CSF
(Yousefi et al., 1996; Pazdrak et al., 1997, 1998); and 3)
the ability of IL-5 and GM-CSF to augment the life span
of human eosinophils was prevented by tyrphostin
AG490 and tyrphostin B42, respectively, selective inhib-
itors of Jak-2 but not lyn kinase (Simon et al., 1997;
Pazdrak et al., 1998). Studies aimed at identifying
downstream effectors of spontaneous apoptosis or the
survival-enhancing effects of hematopoietic cytokines
have excluded ERK-1/2 on the basis that PD 098059, a
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highly selective inhibitor of MEK-1, modifies neither
response (Kankaanranta et al., 1998). In contrast, p38
MAP kinase does seem to play a role in spontaneous
apoptosis. Time course experiments have shown that
activation of p38 MAP kinase is positively correlated
with the degree of eosinophil apoptosis, and that
SB203580, which selectively inhibits the a and b iso-
forms of this enzyme family, enhances the rate of cell
death (Kankaanranta et al., 1998). Intriguingly, both of
these affects are reversed by IL-5 (Kankaanranta et al.,
1998), implying that this pathway is not responsible for
IL-5-induced survival but is central to prolonging viabil-
ity in cytokine-deprived cells.

Tyrosine phosphorylation apparently plays a pivotal
role in CD95-mediated apoptosis. The degradation of the
proteinase lamin B1 following exposure of human eosin-
ophils to CD95L is antagonized by the broad-spectrum
tyrosine kinase inhibitor lavendustin A (Simon et al.,
1998). Experiments with antisense oligonucleotides
have implicated lyn in the regulation of apoptosis (Si-
mon et al., 1998). This is an unexpected finding given
that lyn also is implicated in IL-5-induced eosinophil
survival (see VI.B). Whether the different isoforms of
this kinase subserve distinct functions or extracellular
stimuli can dictate the role lyn plays in eosinophil lon-
gevity remains to be established.

Evidence is available that constitutive eosinophil ap-
optosis and the survival-enhancing activity of IL-5 and
GM-CSF involve the Bcl-2 family of proteins which in-
clude both anti-apoptotic (Bcl-2, Bcl-xL, Mcl-1, A1) and
proapoptotic (Bcl-xS, Bax) members. In freshly prepared
blood eosinophils, high amounts of Bax and Bcl-xL (but
see Druilhe et al., 1998) have been detected by Western
blotting but little, if any, Mcl-1, Bcl-2, and Bcl-xS
(Druilhe et al., 1998, Dibbert et al., 1998). Using the
complementary techniques of reverse transcription
(RT)-PCR, Western blotting, flow cytometry, and immu-
nohistochemistry, Dibbert and colleagues (1998) re-
ported that the mRNA and protein levels for Bcl-xL
decreased during spontaneous eosinophil apoptosis al-
though this was not confirmed in an independent inves-
tigation (Druilhe et al., 1998). In contrast, IL-5 signifi-
cantly increased the expression of Bcl-2 mRNA
transcripts and protein content in cultured eosinophils
which coincided with rescue of cells from apoptosis
(Ochiai et al., 1997). Significantly, introduction of a
phosphothioate antisense oligonucleotide targeted at
the ATG start codon of Bcl-2 mRNA into the cultures
blocked the antiapoptotic action of IL-5 when compared
with the sense cDNA. Similar results also have been
described by Dibbert et al. (1998). Thus, IL-5 and GM-
CSF either maintained or up-regulated Bcl-xL mRNA
and protein levels in human cultured eosinophils. Fur-
thermore, Bcl-xL antisense but not scrambled oligonu-
cleotides attenuated the survival-enhancing activity of
IL-5. It is noteworthy that identical experiments focus-
ing on Bcl-2 failed to detect any change in expression in

response to IL-5 which contrasts with the data pub-
lished by Ochiai et al. (1997). The reason for this dis-
crepancy is unclear.

XIII. Eosinophil Heterogeneity

Human peripheral blood eosinophils are physically,
morphologically, and, above all, functionally heteroge-
neous (Connell, 1968; Tai and Spry, 1976). Variations in
oxidative metabolism and antibody-dependent cytotox-
icity were initially reported in the early 1980s even
among eosinophils of the same buoyant density (Bass et
al., 1980; David et al., 1980; Pincus et al., 1981) and
were described before the formal recognition of physical
heterogeneity. It is now believed that heterogeneity of
eosinophils has physiological/pathophysiological signifi-
cance, and this has prompted many investigations
aimed at understanding the mechanisms responsible for
inducing a hypodense phenotype and how these distinct
populations of cell could be manipulated therapeuti-
cally.

A. Physical Heterogeneity

Essentially three distinct populations of eosinophils
are now recognized that are characterized on the basis of
density and responsiveness to activating stimuli. Com-
pared to the majority (;90%) of eosinophils purified
from the blood of normal individuals, which are of the
resting normodense phenotype, increased numbers of
“hypodense” cells are present in the blood of patients
with eosinophilia associated with parasitosis (De Si-
mone et al., 1982b; Prin et al., 1983, 1984), asthma
(Fukuda et al., 1985b; Kajita et al., 1985; Hodges et al.,
1988; Kloprogge et al., 1989a), allergic rhinitis (Frick et
al., 1988), idiopathic eosinophilic syndrome (Winqvist et
al., 1982; Prin et al., 1983; Peters et al., 1988), and
malignancies (Winqvist et al., 1982; Prin et al., 1983,
1984). It has been suggested that the number of hypo-
dense cells is positively related to the degree of blood
eosinophilia (Fukuda et al., 1985b; Shult et al., 1988)
although this is not always seen (Frick et al., 1988;
Sedgwick et al., 1990a). Thus, the mechanisms that gov-
ern the induction of hypodensity are likely to be differ-
ent from those that promote eosinopoiesis. In addition, a
third population of eosinophils that is neither hypodense
nor resting has been unequivocally identified. Cells in
this category are said to be “primed” in that they re-
spond to stimuli that are ordinarily inactive or relatively
weakly active on eosinophils that are normodense. Al-
though the precise numerical definition of hypodensity
is unclear, there is persuasive evidence that eosinophils
of low buoyant density are activated both metabolically
and functionally, and that their number positively cor-
relates to severity of symptoms (Frick et al., 1988).
Moreover, the vast majority (60–100%) of eosinophils
isolated from the BAL fluid and from the pleural cavity
of patients with diseases associated with eosinophilia
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are invariably hypodense (Winqvist et al., 1982; Prin et
al., 1984, 1986).

B. Functional Heterogeneity

The enhanced activity of hypodense eosinophils is
manifest in a variety of ways. Resting and stimulated
low-density cells demonstrate increased oxidative me-
tabolism (Winqvist et al., 1982) and hexose transport
(Prin et al., 1983), and generate significantly more LTC4
that autologous normodense eosinophils. This is not ob-
viously related to the stimulus and is observed in re-
sponse to diverse agents that include SOZ (Kauffman et
al., 1987), IgG-coated particles (Shaw et al., 1985), the
Ca21 ionophore A23187, and S. mansoni coated with
parasite-specific IgE (Moqbel et al., 1990a). Other func-
tional responses that are up-regulated include PAF gen-
eration (Ojima Uchiyama et al., 1991), antibody-depen-
dent, cell-mediated cytotoxicity (Prin et al., 1983;
Capron et al., 1984), degranulation (Khalife et al., 1986),
chemotaxis (Wardlaw et al., 1986), and adherence
(Kimani et al., 1988).

Two possibilities that could account for the height-
ened functional responsiveness of hypodense eosinophils
have been considered but neither of those is entirely
satisfactory:

1. Cell-Cell Interactions. Before the advent of immu-
nomagnetic beads to remove unwanted CD161 cells, hy-
podense eosinophils were difficult to separate from neu-
trophils. Thus, it was suggested that interactions
between these two cell types could enhance the sensitiv-
ity and responsiveness of eosinophils to activating stim-
uli. However, carefully designed studies to assess this
possibility have proved negative (Kajita et al., 1985;
Kauffman et al., 1987; Hodges et al., 1988) with one
exception (Kloprogge et al., 1989b) in which the gener-
ation LTC4 from a mixture of human eosinophils and
neutrophils was greater than the sum of LTC4 produced
by either cell type alone.

2. Up-Regulation of Cell Surface Receptors. Hypo-
dense eosinophils express a greater number of receptors
for IgG, IgE, CD44, complement, and the p55 subunit of
the IL-2 receptor when compared to their normodense
counterparts (Winqvist et al., 1982; Capron et al., 1985;
Rand et al., 1991a; Matsumoto et al., 1998). Therefore, it
is possible that this contributes to their enhanced acti-
vation status. However, the density of many more recep-
tors is not different between eosinophil populations
(Hartnell et al., 1990), and the expression of some cell
surface epitopes (e.g., CD18) is even decreased in the
hypodense phenotype (Hartnell et al., 1990). Moreover,
the lack of consistency in the magnitude of various re-
sponses elicited by Ca21 ionophores and phorbol esters
(that act independent of cell surface receptors) in hy-
poand normodense eosinophils suggests that up-regula-
tion of receptor expression is not sufficient to account
totally for differences in eosinophil behavior.

C. Morphological Heterogeneity

Low-density eosinophils from the blood of patients
with idiopathic eosinophilic syndromes are typically vac-
uolated, contain more lipid bodies, and express less MBP
than their normodense counterparts. Moreover, the
morphology of the intracellular granules is markedly
altered; they are significantly smaller than those
present in cells of normal density (although the absolute
number is the same), slightly more lucent, and occupy
considerably less cell volume (Henderson et al., 1988;
Peters et al., 1988; Caulfield et al., 1990). In one study,
the percentage of the cytoplasm occupied by eosinophil
granules fell from 33.1% in normodense eosinophils to
19.7% in low-density cells (Caulfield et al., 1990). These
structural abnormalities, in particular the hypogranu-
larity and loss of MBP, provide a rational morphological
basis for hypodensity in vivo. However, the morphology
of low density eosinophils resident in BAL fluid differs
from autologous blood eosinophils. Significantly, the
granules in those cells generally are completely lucent
indicative of degranulation (Metzger et al., 1986) which
equally could explain the hypodense phenotype.

Eosinophil density also can be modulated in vitro in
response to various naturally occurring substances and
pharmacological stimuli. A hypodense phenotype can
rapidly (after 15–60 min) be formed from normodense
cells by agents such as fMLP, PAF, SOZ, and Ca21

ionophores (Fukuda and Gleich, 1989; Kloprogge et al.,
1989a; Agrawal et al., 1996). Significantly, these altered
cells behave similarly to those found in the peripheral
blood of eosinophilic subjects in that they generate more
superoxide and have higher peroxidase activity than
unstimulated cells. Thus, an interaction of normodense
eosinophils with mediators involved in immediate hy-
persensitivity reactions may represent one means of
generating the hypodense phenotype. This contrived
method of altering eosinophil density is not apparently
dependent on degranulation or limited cytolysis, for
there is no concomitant release of EPO, arylsulphatase
B, or lactate dehydrogenase. However, morphologically,
the density transition is associated with multiple struc-
tural alterations. In particular, low-density cells phago-
cytose their granules and display an increase in the
surface area to cell volume ratio (Owen, 1993).

IL-3, IL-5, and GM-CSF also can reduce the buoyant
density of eosinophils (Owen et al., 1987; Rothenberg et
al., 1988, 1989) but their characteristics similarly can
differ depending on the stimulus and experimental con-
ditions in much the same way as hypodense cells found
in vivo. Thus, there is no morphological consistency that
explains the physical transition of normodense eosino-
phils to a hypodense phenotype.

D. Acquisition of a Hypodense Phenotype

It is clear from the above discussion that it is not
possible to identify a single unifying hypothesis that
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adequately explains the generation of low-density eosin-
ophils and, in vivo, it is likely that multiple, possibly
related processes, are involved. At least four possibilities
have been considered and all of them are entirely plau-
sible.

1. Low-density eosinophils arise when normodense
circulating cells enter the extravascular compartment
where upon they become activated;

2. Eosinophils are rendered hypodense in the circula-
tion and then migrate into tissue;

3. Low-density eosinophils reflect an increase in the
number of immature cells that have been released from
the bone marrow;

4. Hypodense eosinophils appear solely as a function
of disease severity.

The knowledge that certain cytokines (e.g., IL-3, IL-5,
GM-CSF) and/or mediators (e.g., PAF) can enhance eo-
sinophil survival and/or promote hypodensity in vitro,
and that they are present at biologically active concen-
trations in blood, in tissue fluids, and at sites of inflam-
matory reactions adds further support to the belief that
eosinophil hypodensity can be effected by multiple
mechanisms.

For additional information on eosinophil heterogene-
ity, interested readers should consult the following ex-
cellent articles (Sorice and De Simone, 1986; Fukuda
and Gleich, 1989; Owen, 1993; Wardlaw, 1995).

XIV. Pharmacological Modulation of Eosinophil
Function

A. Phosphodiesterase Inhibitors

Cyclic nucleotide PDEs are a heterogeneous group of
immunologically distinct enzymes whose sole function is
to metabolize the second messenger purine nucleotides,
cAMP and cyclic GMP, to their biologically inactive nu-
cleotide 59-monophosphates. Currently, PDEs are cate-
gorized into nine broad families (PDEs 1–9; see Beavo et
al., 1994; Fisher et al., 1998a,b; Soderling et al., 1998)
that are distinguished by a number of criteria including
substrate specificity, kinetic properties, sensitivity to
allosteric modulators and synthetic inhibitors, and pri-
mary amino acid sequence (Beavo, 1988; Giembycz and
Souness, 1994). In many cases these families comprise
multiple subtypes which suggests that the degradation
of cAMP and cyclic GMP is a highly complex and tightly
regulated process.

1. Enzymology. The predominant PDE isoenzyme ex-
pressed by guinea pig peritoneal (Dent et al., 1991; Sou-
ness et al., 1991) and human peripheral blood eosino-
phils (Dent et al., 1994; Hatzelmann et al., 1995; Aloui et
al., 1996) preferentially hydrolyzes cAMP over cyclic
GMP. In fact, little cyclic GMP hydrolysis is detected in
eosinophil lysates from either species. The metabolism
of cAMP by PDE in eosinophils is insensitive to Ca21/
calmodulin, cyclic GMP, and inhibitors of PDE3, but is
potently inhibited by rolipram, denbufylline, RP 73401,

Org 20241, and a number of related compounds (Dent et
al., 1991; Souness et al., 1991; Dent et al., 1994; Bar-
nette et al., 1995a; Hatzelmann et al., 1995; Nicholson et
al., 1995; Souness et al., 1995). Thus, based upon criteria
established previously (Beavo, 1988; Beavo et al., 1994),
the PDE in eosinophils can be ascribed to the cAMP-
specific, or PDE4, family of isoenzymes. Despite a lack of
biochemical data, a small amount of PDE3 may be
present in guinea pig eosinophils given that milrinone is
reported to suppress agonist-induced chemotaxis at con-
centrations considered selective for inhibiting PDE3
(Cohan et al., 1992).

Currently, four genes (PDE4A, PDE4B, PDE4C,
PDE4D) have been identified in rat (Colicelli et al., 1989;
Davis et al., 1989; Swinnen et al., 1989a,b), mouse
(Cherry and Davis, 1995), and humans (Livi et al., 1990;
Bolger et al., 1993; McLaughlin et al., 1993; Obernolte et
al., 1993; Baecker et al., 1994; Sullivan et al., 1994a;
Engels et al., 1995) that can encode multiple, distinct
PDE4 isoenzymes. In human eosinophils, mRNA tran-
scripts for PDE4A, PDE4B, and PDE4D have been de-
tected by RT-PCR (Engels et al., 1994), whereas only
PDE4D gene products have been found in guinea pig
cells (Souness et al., 1995).

Greater than 90% of the cAMP hydrolytic activity in
guinea pig and human eosinophils is confined to the
particulate fraction (Dent et al., 1991, 1994; Souness et
al., 1991). Treatment of eosinophil membranes with Tri-
ton X-100 or high ionic strength buffers does not dis-
lodge PDE4 activity (Dent et al., 1991, 1994; Souness et
al., 1991), indicating that the enzyme is an integral
membrane component. However, almost total solubiliza-
tion of eosinophil PDE4 can be achieved with the bile
acid, deoxycholate, in the presence of millimolar concen-
trations of NaCl (Souness et al., 1991). Although yet to
be formally investigated in eosinophils, it is highly likely
that membrane localization is conferred by specific
amino acid residues at the extreme amino-terminus of
the protein (Shakur et al., 1993; Lobban et al., 1994;
Houslay et al., 1995; Scotland and Houslay, 1995; Hous-
lay, 1996; Smith et al., 1996b).

Complex kinetics of cAMP hydrolysis are exhibited by
eosinophil PDE4 (Dent et al., 1991, 1994; Souness et al.,
1991, 1992; Souness and Scott, 1993; Giembycz and
Souness, 1994), a feature shared with other membrane-
bound PDEs (Souness et al., 1985; Wright et al., 1990).
The explanation for this phenomenon is uncertain but it
is unlikely to be due to the expression of multiple PDE4
subtypes since the Km of cAMP for PDE4 gene products
is similar (Wang et al., 1997). This assertion is strength-
ened by the finding that anion exchange chromatogra-
phy of solubilized membrane-bound PDE4 from guinea
pig eosinophils resolves a single peak of catalytic activity
(Souness et al., 1992). Moreover, the marked nonlinear
kinetics of cAMP hydrolysis is largely lost upon solubi-
lization, which has led to the now widely accepted belief
that PDE4 isoenzymes can adopt at least two distinct
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and noninterconvertible conformations, PDE4H and
PDE4L, for which rolipram has high and low affinity,
respectively (Barnette et al., 1995a,b, 1996; Kelly et al.,
1996; Souness et al., 1996, 1997; Souness and Rao,
1997). In guinea pig eosinophils, the inhibition of fMLP-
induced superoxide generation suggests that PDE4
adopts a conformation at which rolipram and related
molecules interact with low affinity (Barnette et al.,
1995a). Whether this relationship holds true for other
functional responses in the eosinophil is currently un-
known.

2. Activation of the NADPH Oxidase. Nonselective
PDE inhibitors (theophylline, IBMX) and drugs which
have been categorized as inhibitors of PDE4 (e.g., rolip-
ram, denbufylline, Ro 20-1724, RP 73401, CP-80,663,
D-22888) and hybrid inhibitors of PDE3 and PDE4 (e.g.,
zardaverine, Org 20241, Org 30029, benafentrine) atten-
uate the activation of the NADPH oxidase in eosinophils
isolated from the guinea pig peritoneal cavity and from
human venous blood in response to a variety of stimuli
including fMLP, PAF, LTB4, C5a, SOZ, IL-5, and C3b-
opsonized zymosan (Dent et al., 1991, 1994, 1998b; Sou-
ness et al., 1991, 1995; Maruo et al., 1994; Torphy et al.,
1994; Barnette et al., 1995a; Nicholson et al., 1995;
Cohan et al., 1996; Ezeamuzie and Al-Hage, 1998). Sup-
pression of the respiratory burst is associated with the
inhibition of PDE4, an increase in the cAMP content and
the activation of PKA (Souness et al., 1991). However
differences and anomalies are apparent between inves-
tigations. In a study conducted by Hatzelmann et al.
(1995) PDE4 inhibitors failed to suppress C5a-induced
activation of the NADPH oxidase unless a b2 adrenocep-
tor agonist was present. Although this might simply
reflect low basal adenylyl cyclase activity in those cells,
it is strange that the IC50 value derived for RP 73401
and tolafentrine was at least two orders of magnitude
lower than would be predicted from the inhibition of
PDE4 in a cell-free system, yet the potency of two other
inhibitors, rolipram and zardaverine, was consistent
with their corresponding IC50 values for the inhibition of
PDE4. The reason for this discrepancy is not clear, but
the ability of PDE4 isoforms to apparently adopt differ-
ent conformations for which some inhibitors interact
with different affinities provides a possible explanation.
See Souness and Rao (1997) for additional details.

3. Degranulation. The nonselective PDE inhibitor
IBMX prevents the release of EDN from human normo-
dense eosinophils challenged with IgG- and secretory
IgA-coated Sephadex beads (Kita et al., 1991b). The
mechanism of this effect probably relates to inhibition of
cAMP hydrolysis since it potentiates the same effect
elicited by PGE2 and the b adrenoceptor agonists salbu-
tamol and isoprenaline (Kita et al., 1991b). Moreover,
similar results have been obtained with selective inhib-
itors of PDE4 including rolipram, zardaverine, RP
73401, and tolafentrine for the inhibition of C5a-induced
ECP and EDN release (Hatzelmann et al., 1995). How-

ever, in those studies degranulation was suppressed
only in the presence of salbutamol, which might relate to
the selective nature of the inhibitors examined (cf.
IBMX) or, alternatively, the possibility that the degran-
ulation-evoking stimulus influences the sensitivity of
human eosinophils to cAMP. The ability of PDE4 inhib-
itors to suppress eosinophil degranulation is not con-
fined to cells of human origin; indeed rolipram and RP
73401 inhibit the release of ECP and MBP from guinea
pig cells stimulated with LTB4 (Souness et al., 1995).

4. Adhesion and Adhesion Molecule Expression. Tor-
phy et al. (1994) have reported that R-rolipram reduces
the adhesion of guinea pig eosinophils to HUVECs stim-
ulated with PMA and TNFa. That effect was modest
(25–40%) with maximum inhibition of adhesion ob-
served when both cell types were exposed concurrently
to the PDE4 inhibitor (Torphy et al., 1994). In contrast,
neither siguazodan (PDE3 inhibitor) nor zaprinast
(PDE5 inhibitor) demonstrated activity in this experi-
mental system (Torphy et al., 1994), which is consistent
with PDE4 being the primary cyclic nucleotide PDE
isoenzymes expressed by eosinophil (Dent et al., 1991,
1994; Souness et al., 1991; Hatzelmann et al., 1995;
Aloui et al., 1996) and vascular endothelial cells (Blease
et al., 1998). Those data are supported by studies per-
formed with human eosinophils in which the expression
of CD11b and shedding of L-selectin by PAF and eotaxin
were inhibited, albeit modestly, by rolipram (Berends et
al., 1997; Santamaria et al., 1997). Thus, part of the
potential anti-inflammatory action of PDE4 inhibitor
might be a direct effect on eosinophils to reduce their
propensity to adhere to the vascular endothelium and
ability to migrate out of the blood vessels.

5. Chemotaxis and Chemokinesis. The migration of rat
and guinea pig eosinophils evoked by a number of stim-
uli including PAF, LTB4, and C5a is inhibited by the
PDE4 inhibitor rolipram when studied in Böyden micro-
chemotaxis chambers (Cohan et al., 1992; Alves et al.,
1996) and is potentiated in the presence of forskolin
(Alves et al., 1996). Siguazodan and zaprinast are inac-
tive under comparable experimental conditions. Identi-
cal results are available for human eosinophils. Thus,
eotaxin-, PAF-, LTB4-, and C5a-induced migration is
partially prevented by PDE4 inhibitors and theophylline
(Kaneko et al., 1995c; Tenor et al., 1996; Santamaria et
al., 1997). Although C5a- and PAF-induced chemotaxis
is enhanced in eosinophils purified from the peripheral
blood of atopic subjects when compared to that of normal
individuals, the potency (IC50) of theophylline and roli-
pram as inhibitors of migration is not significantly dif-
ferent.

6. Synthesis of Lipid Mediators. Of the limited studies
conducted to date, PDE4 inhibitors prevent or signifi-
cantly attenuate the elaboration of lipid mediators from
activated eosinophils. Tenor and colleagues (1996) dem-
onstrated that little if any LTC4 is released from human
eosinophils by PAF and C5a unless indomethacin is
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present. It was reasoned that under normal conditions,
inhibitory prostaglandins (e.g., PGE2) are generated
preferentially in response to activating stimuli and act
in an autocrine manner to suppress eosinophil activa-
tion. Indeed, in the presence of indomethacin, substan-
tial amounts of LTC4 were release in response to PAF
and C5a. Furthermore, this lipolytic response was inhib-
ited by rolipram with a potency in the high nanomolar
range and could be prevented by the PKA inhibitor
Rp-8-Br-cAMPS. The site of action of cAMP appears to
be at the level of PLA2 since exogenous AA reversed the
inhibitory effect of rolipram on LTC4 formation (Tenor et
al., 1996). In guinea pig eosinophils, LTB4-induced TX
generation is prevented by rolipram, ibudilast, and RP
73401 (Souness et al., 1994).

7. Apoptosis. Little is published of the effect of PDE
inhibitors on eosinophil longevity although IBMX has
been reported to rescue eosinophils from apoptosis, re-
sulting from activation of the CD95 receptor by an acti-
vating antibody. The mechanism of this effect is unclear
since neither rolipram nor denbufylline affected eosino-
phil viability in GM-CSF-treated human eosinophils
(Hallsworth et al., 1996). See XII.H, XIV.C, XIV.D, and
XIV.N.1 for further discussion.

8. In Vivo Effects. Comparatively little is known of the
actions of isoenzyme-selective PDE inhibitors upon ei-
ther the acute (IgE-mediated) or chronic (proinflamma-
tory/immunocompetent cell-mediated) consequences of
allergen provocation in vivo. However, there are many
reports describing the effect of PDE inhibitors on pas-
sive cutaneous anaphylaxis and cell infiltration into
sites of inflammation. In particular, the effect of PDE
inhibitors on the infiltration of proinflammatory cells
into the airway lumen, skin, and eye of guinea pigs, rats,
mice, rabbits, and monkeys in response to various me-
diators and allergen has been extensively documented
(Table 20). Schudt et al. (1991) reported that pretreat-
ment of sensitized guinea pigs with zardaverine, a
mixed PDE3/4 inhibitor, markedly suppressed allergen-
induced infiltration of eosinophils, macrophages, and
neutrophils into the BAL fluid to a level achieved with
dexamethasone. Comparable data have been reported
for the PDE3/4 inhibitor, benafentrine, on PAF- (Sanjar
et al., 1989; Sanjar et al., 1990b) and allergen-induced
(Sanjar et al., 1990c) pulmonary eosinophil recruitment
in guinea pigs after chronic (6 days) dosing. More con-
temporary experiments conducted with rolipram have
corroborated those data. Thus, intragastric administra-
tion of rolipram to conscious guinea pigs selectively at-
tenuated allergen-induced pulmonary eosinophil influx
into the BAL fluid and tissue (Underwood et al., 1993).
Similarly, the introduction of rolipram directly into the
airways of guinea pigs as a micronised dry powder al-
most completely prevented the appearance of proinflam-
matory leukocytes into the BAL fluid in response to
allergen provocation (Raeburn et al., 1993). Essentially
identical results have been reported in a guinea pig

model of cutaneous inflammation (Teixeira et al.,
1994b). Systemic administration of rolipram, but not
zaprinast or SK&F 94120, suppressed the accumulation
of 111In-labeled eosinophils into the skin sites that had
been challenged with zymosan-activated plasma, PAF,
and histamine (Teixeira et al., 1994b).

Treatment of sensitized cynomolgous monkeys with
rolipram and CP 80663 does not block the immediate
increase in airways resistance that follows acute antigen
provocation (Turner et al., 1994, 1996) but abrogates the
pulmonary eosinophilia and airways hyperresponsive-
ness after multiple exposures to the antigen. Thus, these
data are consistent with the findings of Howell et al.
(1993) that PDE4 inhibitors may be anti-inflammatory
and act primarily to prevent the activation of immune
cells in the lung rather than exerting an antispasmo-
genic or spasmolytic effect at the level of airway smooth
muscle.

Other models of inflammation are also sensitive to
PDE4 inhibitors. For example, allergen-induced lung
eosinophilia in Brown Norway rats, an IgE-producing,
steroid-sensitive species that exhibits both early and
LPRs, is suppressed by PDE3 (milrinone, CI-930), PDE4
(rolipram, denbufylline), and the hybrid PDE3/4 inhibi-
tor, Org 20241 (Elwood et al., 1995; Howell et al., 1995),
when administered to the animals acutely and before
allergen challenge. The results of Howell et al. (1995)
are particularly intriguing as they demonstrate an anti-
inflammatory effect of PDE3 inhibitors in an in vivo
model of eosinophilia. An interpretation of those data is
that the eosinophil is not the cellular target of milrinone
and CI-930 since PDE3 probably is not expressed by
these cells (Dent et al., 1991, 1994; Souness et al., 1991;
Hatzelmann et al., 1995; Aloui et al., 1996). Curiously,
in guinea pigs given PDE inhibitors chronically (daily
for 7 days), a different profile of activity has been re-
ported (Banner et al., 1995). Thus, rolipram and
benafentrine failed to lower eosinophil numbers in the
BAL fluid of allergen-challenged animals but signifi-
cantly reduced the amount of EPO-like immunoreactiv-
ity indicating that eosinophil degranulation but not traf-
ficking was inhibited (Banner et al., 1995). It is not
immediately clear why eosinophil recruitment was re-
sistant to rolipram and benafentrine in that study given
that piclamilast (RP 73401) effectively reduced the cell
number and EPO content in BAL fluid in the same study
(Banner et al., 1995).

In a guinea pig eye model of tissue eosinophilia, roli-
pram when administered by gavage, significantly inhib-
ited the number of eosinophils that appeared in the
conjunctival epithelium in response to histamine, and a
combination of LTB4 and LTD4 (Newsholme and
Schwartz 1993). In another study, Griswold et al. (1993)
reported that oral administration to mice with rolipram
inhibited AA-induced inflammatory cell accumulation
and activation assessed by myeloperoxidase activity in
the inflammatory exudate.
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Although proinflammatory mediators such as PAF,
histamine and LTB4 elicit pulmonary eosinophil recruit-
ment, the eosinophil count in the airways lumen is con-
siderably less than that seen following antigen provoca-
tion (Aoki et al., 1988). This observation, along with the
finding that selective antagonists of these mediators do
not abrogate eosinophil recruitment following antigen
challenge, implicates mediators other than PAF, hista-
mine, and LTB4 in eosinophil accumulation in the lung.
It is now recognized that chronic proinflammatory cyto-
kines/chemokines including IL-3, IL-5, GM-CSF,
RANTES, TNFa, eotaxin, and MIP-1a can elicit the
pulmonary accumulation and activation of eosinophils.
Indeed, Kings et al. (1990) documented the ability of
human recombinant IL-3 and GM-CSF, and mouse
TNFa, to selectively attract eosinophils into the lungs of
guinea pigs. Significantly, pretreatment of the animals
with the PDE3/4 inhibitor benafentrine effectively sup-
pressed that response (Kings et al., 1990). Collectively,
these are important observations since they imply that
selective PDE inhibitors are effective at blocking the
deleterious actions of both acute and chronic mediators
of allergic inflammation. Although it is unclear how
PDE inhibitors prevent pulmonary eosinophilia, it is
likely that part of their action is to suppress directly the
activation of eosinophils. This is suggested from studies
where the injection of salmeterol-treated, 111In-labeled
guinea pig eosinophils into the systemic circulation of
recipient guinea pigs is associated with a marked reduc-
tion in the their ability to infiltrate skin sites exposed to
an inflammatory insult (Teixeira and Hellewell, 1997b).

There are no reports of the effects of PDE4 inhibitors
upon eosinophil numbers in humans. However, it has
been reported that ibudilast, a nonselective PDE inhib-
itor (Souness et al., 1994), failed to reduce the circulat-
ing eosinophil count in asthmatic subjects (Kawasaki et
al., 1992). However, in another study, oral administra-
tion of the PDE4-selective inhibitor CDP 840 to 54 asth-
matic patients in a placebo-controlled, double-blind clin-
ical trial produced a marginal, but significant, inhibition
of the LPR following antigen provocation, which is be-
lieved to involve the influx and activation of eosinophils
from the circulation (Harbinson et al., 1997).

B. Theophylline

Theophylline is an adenosine antagonist and weak
inhibitor of cyclic nucleotide PDEs and provides a main-
stay in the treatment of asthma in the western world.
However, the beneficial effects of theophylline on those
cell types implicated in the pathogenesis of asthma, such
as the eosinophil, and their pharmacological and bio-
chemical basis essentially are unknown.

1. In Vitro Effects. Theophylline exhibits multiple
pharmacological actions and its effects on leukocyte
function accordingly are complex. In guinea pig and
human eosinophils, theophylline attenuates PAF-, IL-5-,
and SOZ-induced superoxide anion generation (Yukawa
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et al., 1989b; Dent et al., 1994; Hatzelmann et al., 1995;
Ezeamuzie and Al-Hage, 1998) at concentrations (.100
mM) that inhibit PDE4 in washed membranes and ele-
vate the cAMP content in intact cells (Dent et al., 1991;
Souness et al., 1991). The finding that the 8-phenyl
analog of theophylline, which is not a PDE inhibitor,
fails to reduce superoxide anion generation, supports the
belief that theophylline inhibits the activation of the
NADPH oxidase in eosinophils through PDE inhibition
(Yukawa et al., 1989b). At lower concentrations of the-
ophylline, that approximate to what is achieved clini-
cally, a paradoxical increase in superoxide anion gener-
ation has been reported which probably is attributable
to the antagonism of endogenously released adenosine.
Indeed, the available data suggest that adenosine syn-
thesized endogenously by eosinophils normally exerts a
negative autocrine effect on oxidative metabolism and
that theophylline, at therapeutic doses, blocks this pro-
tection. However in asthma, adenosine might act as a
proinflammatory mediator through the A1 receptor sub-
type. Potentially, this has important therapeutic impli-
cations in cell-mediated inflammatory diseases where
theophylline is prescribed since blocking the A1 receptor
could, on balance [and despite the ability of adenosine to
enhance the elaboration of superoxide anions in leuko-
cytes (Schrier and Imre 1986)], impart an anti-inflam-
matory influence which might contribute to its efficacy
in the treatment of asthma.

Theophylline prevents degranulation of human eosin-
ophils (assessed as secreted EDN or ECP) in response to
IgG, secretory IgA, fMLP, and C5a (Kita et al., 1991b;
Hatzelmann et al., 1995; Ezeamuzie and Al-Hage 1998).
A consistent finding is that IgG-induced EDN release is
significantly more sensitive to theophylline than the
same response evoked by secretory IgA (Kita et al.,
1991b) which agrees completely with results of other
experiments where b adrenoceptor agonists were stud-
ied. In another investigation, Eda et al. (1993a) reported
that theophylline enhanced the ability of the b2 adreno-
ceptor agonist eformoterol to suppress PAF-evoked ECP
release, implying that the negative effect on degranula-
tion is due to the inhibition of PDE and is therefore
governed by a cAMP-dependent mechanism(s).

Theophylline reduces the enhanced survival of guinea
pig (Adachi et al., 1996) and human eosinophils (Hos-
sain et al., 1994a; Ohta et al., 1996) afforded by IL-5.
Significantly, the morphological changes seen at the
electron microscopic level and the fragmentation of DNA
visualized on agarose gels show the characteristics of
apoptosis rather than necrosis (Adachi et al., 1996). Al-
though it is established that cAMP effectively promotes
the apoptosis of human eosinophils (see XIV.C and
XIV.D), the molecular mechanism of action of theophyl-
line is not clear since the PDE4 inhibitors rolipram and
denbufylline are inactive (Hallsworth et al., 1996).

Other in vitro functional responses that are negatively
regulated by theophylline include agonist-stimulated

chemotaxis (Clark et al., 1977; Eda et al., 1993a; Tenor
et al., 1996), LTC4 and TX biosynthesis (Souness et al.,
1994; Tenor et al., 1996), the up-regulation of the surface
adhesion molecule Mac-1 by PAF (Sagara et al., 1996),
and antibody-dependent, eosinophil-mediated damage
of 51Cr-labeled schistosomula of S. mansoni (David et
al., 1977).

2. In Vivo Effects. The administration of theophylline
to sensitized laboratory animals before antigen provoca-
tion or in response to proinflammatory spasmogens such
as PAF, histamine, or Sephadex beads has a variable
effect on bronchial hyperreactivity and, in the case of
allergen, on the early and LPR (Perruchoud et al., 1984;
Sanjar et al., 1989; 1990b,c; Ali et al., 1992; Gozzard et
al., 1996b). These are curious findings since in the ma-
jority of cases (but see Banner et al., 1995; Namovic et
al., 1996), experiments conducted with sensitized rats
and guinea pigs have demonstrated that theophylline
suppresses pulmonary eosinophil recruitment, which is
believed to be intimately associated with the develop-
ment of the LPR (Gristwood et al., 1991; Tarayre et al.,
1991a, b, 1992; Manzini et al., 1993; Lagente et al.,
1994b, 1995; Howell et al., 1995; Gozzard et al., 1996b).
It is important to appreciate, however, that in many of
these studies theophylline was administered acutely, as
a single dose in excess of that given therapeutically and
may, therefore, have little clinical relevance. In contrast,
chronic dosing of guinea pigs with theophylline for 7
days effectively prevents PAF- and allergen-induced
pulmonary eosinophilia at doses that are achieved clin-
ically (Sanjar et al., 1989, 1990b,c; but see Banner et al.,
1995).

A newer xanthine PDE inhibitor, isbufylline, that has
negligible affinity for adenosine receptors (Manzini et
al., 1990), similarly reduces eosinophil recruitment into
the airways of sensitized guinea pigs following antigen
inhalation and suppresses PAF-induced bronchial re-
sponsiveness effected by i.v. histamine (Manzini et al.,
1993).

Theophylline also prevents the influx of eosinophils
into the pleural cavity of carrageenan-challenged mice
(Saleh et al., 1996) and the cutaneous eosinophilia in
sensitized guinea pigs that results following allergen
challenge (Teixeira et al., 1994a). In the latter study, a
substantial reduction in the accumulation of 111In-la-
beled eosinophils into the skin of sensitized guinea pigs
injected intradermally with zymosan-activated plasma
(source of C5a), PAF or antigen was noted.

Although the clinical pharmacology of theophylline is
well documented, it was only recently appreciated that
the efficacy of this drug in asthma is attributable to
actions other than bronchodilatation. Significantly,
there is increasing evidence that theophylline exerts an
immunomodulatory action in clinical asthma (Pardi et
al., 1984; Ward et al., 1993; Jaffar et al., 1994; Sullivan
et al., 1994b; Banner and Page, 1995a, 1996; Kidney et
al., 1995; Chung, 1996; Finnerty et al., 1996; Kraft et al.,
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1996; MacLeod and Djukanovic, 1996) at plasma concen-
trations that do not affect airway smooth muscle tone
(Ward et al., 1993; Jaffar et al., 1994; Sullivan et al.,
1994b; Finnerty et al., 1996; Tohda et al., 1998). Several
lines of investigation have led to this conclusion. In
particular, evidence from the majority of studies has
demonstrated that theophylline protects against the
LPR following allergen provocation, implying that the
emigration of proinflammatory and immunocompetent
cells from the circulation into the lung and/or their sub-
sequent activation is suppressed. With respect to the
eosinophil, experiments conducted by Costello and col-
leagues (Jaffar et al., 1994; Sullivan et al., 1994b) have
demonstrated that the numbers of EG21 (marker for
secreted MBP) eosinophils and CD41 T lymphocytes
were reduced in allergic subjects given low-dose theoph-
ylline (mean plasma concentration 6.6 mg/ml) for 6
weeks. In another in vivo study, treatment of asthmatic
subjects for 11 months with oral theophylline (600 mg/
day) reduced the circulating concentration of ECP and
EDN indicative of a negative effect on eosinophil degran-
ulation (Pedersen et al., 1996). However, lung function,
assessed by the measurement of FEV1 (% predicted) and
histamine PC20, was not improved (Pedersen et al.,
1996).

The mechanism by which theophylline could exert an
immunomodulatory action is far from clear. It has been
reported that oral administration of theophylline (re-
sulting in a mean plasma concentration of 10.9 mg/ml) to
moderately severe asthmatic subjects reduced the num-
ber of cells staining for IL-4 and IL-5 (Djukanovic et al.,
1995; Finnerty et al., 1996), implying that theophylline
may act, at least in part, to repress transcription of the
IL-4 and IL-5 genes or reduce the translation of preex-
isting mRNAs. In this respect, mRNA transcripts and
protein for IL-4 and IL-5 have been identified in human
eosinophils (Moqbel et al., 1995; Moller et al., 1996a,b;
Nakajima et al., 1996). See XII.D.4 and XII.D.5 for de-
tails.

C. Cholera Toxin and Forskolin

Exposure of human eosinophils to cholera toxin (CTX),
which ADP ribosylates Gsa and, thereby, irreversibly acti-
vates adenylyl cyclase, results in a significant increase in
the cAMP content (Kita et al., 1991b; Hallsworth et al.,
1996). Functionally, secretory IgA and IgG-induced EDN
release is prevented in CTX-treated cells, providing fur-
ther evidence that eosinophils can be modulated by cAMP-
dependent mechanisms (Kita et al., 1991b). In agreement
with the inhibitory influence of b adrenoceptor agonists
and IBMX on EDN secretion, IgG-induced degranulation
is significantly more sensitive to CTX than the same re-
sponse evoked by secretory IgA (Kita et al., 1991b). Atten-
uation of the secretory response is observed after a latency
of approximately 1 h, which is consistent with the lag time
required for the activation of Gsa by CTX.

Hallsworth et al. (1996) have reported that CTX re-
duces the survival of human eosinophils cultured in the
presence of GM-CSF. Eosinophil DNA, extracted from
CTX-treated cells, and run on an agarose gels was com-
pletely fragmented, showing a distinctive “ladder pattern”
of approximately 200 bp, indicating the activation of an
endonuclease characteristic of apoptosis (Hallsworth et al.,
1996). The ability of CTX to reduce eosinophil survival was
prevented by the PKA inhibitor H-89, implicating a cAMP-
dependent mechanism(s) in apoptosis (Hallsworth et al.,
1996). Taken together, these are intriguing results given
that cAMP enhances the survival of human neutrophils
(Rossi et al., 1995) and implies that fundamental differ-
ences exist in the regulation of programmed cell death
between eosinophils and neutrophils. This contention is
supported further by the finding that in the absence of
GM-CSF, the survival of human eosinophils is signifi-
cantly enhanced by CTX by processes that are not sensitive
to H-89 and, therefore, may be independent of PKA
(Hallsworth et al., 1996). Thus, cAMP-elevating drugs can
exert opposite effects on the longevity of human eosino-
phils that depend upon whether or not the cells are ex-
posed to GM-CSF.

The naturally occurring diterpene, forskolin, which in
many cell types promotes a robust activation of adenylyl
cyclase, has little if any effect on the cAMP content of
eosinophils at concentrations up to 10 mM (Alves et al.,
1996; Hallsworth et al., 1996). Increasing the concentra-
tion of forskolin further is associated with a detectable
increment in cAMP mass (Alves et al., 1996; Hallsworth
et al., 1996) but this effect is modest which tempts spec-
ulation that eosinophils might express a significant
amount of adenylyl cyclase IX which is forskolin-insen-
sitive (see Iyengar, 1993a,b; Pieroni et al., 1993). The
limited ability of forskolin to elevate eosinophil cAMP
content presumably explains, at least in part, its vari-
able effects in functional assays. Thus, although forsko-
lin does not promote apoptosis of human eosinophils
(Hallsworth et al., 1996) or inhibit LTB4-induced TX
biosynthesis or H2O2 generation in guinea pig eosino-
phils, it nevertheless effectively suppresses chemotaxis
of rat and human eosinophils in response to PAF, C5a,
and LTB4 (Kaneko et al., 1995c; Alves et al., 1996).
Moreover, incubating rat eosinophils with rolipram and
forskolin, at concentrations that exert no effect when
examined individually, markedly attenuates chemotaxis
in the absence of a detectable change in cAMP mass.
These results clearly implicate cAMP in the regulation
of chemotaxis and suggest that forskolin evokes a subtle
increase in cAMP in rat eosinophils such that it cannot
be detected when total cell cAMP is measured.

D. Cyclic Nucleotide Analogs

Almost all indices of eosinophil activation studied,
that are considered to be proinflammatory or tissue pre-
serving, are suppressed by lipophilic cAMP analogs
(Clark et al., 1977; Sher and Wadee, 1981; Dent et al.,
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1991; Kita et al., 1991b; 1995; Alves et al., 1996;
Hallsworth et al., 1996; Berends et al., 1997; Hebestreit
et al., 1998). Agonist-induced AA mobilization, activa-
tion of the NADPH oxidase, chemotaxis, expression of
CD11b, and the shedding of L-selectin are reduced by
dibutyryl cAMP (Clark et al., 1977; Dent et al., 1991;
Alves et al., 1996; Berends et al., 1997). Similarly, pre-
treatment of human eosinophils with a range of analogs
including dibutyryl cAMP, 8-Br-cAMP, and N6-benzoyl-
cAMP prevents IgG-, secretory IgA- and MBP-induced
degranulation (Kita et al., 1991b), MBP-induced IL-8
production (Kita et al., 1995), and chemotaxis in re-
sponse to endotoxin-activated serum (Clark et al., 1977).
In addition, flow cytometric analyses have shown that
dibutyryl cAMP enhances FcgRII (CD32) receptor ex-
pression on human peripheral blood eosinophils and on
eosinophils differentiated in vitro from mononuclear
cells by IL-5 (Akutagawa et al., 1994). In contrast, dibu-
tyryl cAMP reduces the ability of IFNg to up-regulate
FcgRIII (CD16) receptor number (Akutagawa et al.,
1994).

Dibutyryl cAMP also promotes apoptosis of human
eosinophils cultured with GM-CSF (Hallsworth et al.,
1996) but, paradoxically, reverses spontaneous and
CD95-mediated death in cytokine-deprived cells
(Hallsworth et al., 1996; Hebestreit et al., 1998). These
results are entirely consistent with the effect of CTX on
cell survival (XIV.C) and endorses the idea that activa-
tion of the cAMP-dependent protein kinase cascade can
produce pro- and antiapoptotic effects, which are deter-
mined by the absence or presence of other eosinophil
stimuli.

Dibutyryl cyclic GMP is generally inactive on eosino-
phils (Sher and Wadee, 1981; Dent et al., 1991). How-
ever, one exception seems to be the regulation of cell
survival where it inhibits spontaneous and CD95-medi-
ated apoptosis of eosinophils purified from human pe-
ripheral blood (Beauvais et al., 1995a; Hebestreit et al.,
1998).

E. Glucocorticosteroids

Glucocorticosteroids are the most effective anti-in-
flammatory drugs currently available for the treatment
of a number of disorders including asthma, atopic der-
matitis, rhinitis, and various syndromes associated with
hypereosinophilia. The clinical efficacy of these drugs is
attributable to a number of distinct actions. In particu-
lar they: 1) reduce circulating eosinophil numbers
(Saunders and Adams, 1950; Dahl and Venge, 1978;
Hallgren et al., 1979; Baigelman et al., 1983; Gleich et
al., 1984; Zora et al., 1984; Bochner et al., 1991b; But-
terfield et al., 1992; Evans et al., 1993; Laviolette et al.,
1994) and the percentage exhibiting a hypodense phe-
notype (Evans et al., 1993; Kuo et al., 1994); 2) prevent
or attenuate the recruitment of eosinophils to sites of
inflammation following allergen provocation (Rebuck
and Mellinger, 1953; Pipkorn et al., 1987a,b; Schleimer,

1988; Bascom et al., 1989; Charlesworth et al., 1991;
Varney et al., 1992; Taborda Barata et al., 1996); 3)
reduce the number of eosinophils and the concentration
of eosinophil secretory products in the blood, BAL, nasal
fluid (Hallgren et al., 1979; Andersson et al., 1989; Bas-
com et al., 1989; Bisgaard et al., 1990; Janson Bjerklie et
al., 1993), and the airway mucosa (Adelroth et al., 1990;
Djukanovic et al., 1992; Jeffrey et al., 1992; Laitinen et
al., 1992; Wang et al., 1994); 4) control symptoms in
asthma patients of all ages and severity (Konig, 1988;
Barnes, 1993, 1995; Barnes and Pedersen, 1993); and 5)
reduce bronchial hyperresponsiveness (Barnes, 1990;
O’Connor et al., 1992; Kuo et al., 1994). Similar effects
have been documented in a variety of animal models of
allergic and parasitic diseases (Sabag et al., 1978; Eti-
enne et al., 1989b; Sanjar et al., 1989, 1990b,c; Kawabori
et al., 1991; Parker et al., 1991; Elwood et al., 1992;
Gundel et al., 1992; Kung et al., 1994; Lagente et al.,
1994b; Woolley et al., 1994a; Teixeira et al., 1996c;
Danahay and Broadley, 1998; Lawrence et al., 1998).
Given the diverse activities of steroids, knowledge of
how they affect eosinophil function in vitro and in vivo,
and an understanding of their molecular pharmacology
is clearly desirable if advances in anti-inflammatory
therapies are to be achieved.

1. Receptors. Many of the anti-inflammatory proper-
ties of steroids are thought to be mediated via the GR,
which have been identified and, to some extent, charac-
terized in eosinophils (Peterson et al., 1981). The struc-
ture of the GR has been elucidated using site-directed
mutagenesis (Muller and Renkawitz, 1991) but, unlike
almost every other receptor, there is no evidence for GR
heterogeneity within or between tissues (Barnes, 1997).
Using [3H]dexamethasone, Peterson et al. (1981) de-
scribed the labeling of a population of high-affinity (Kd 5
15 nM), low-capacity (Bmax 5 11,000 per cells) binding
sites on human eosinophils. The proposal that glucocor-
ticoids act through GR is supported by the finding that
the rank order of potency of various steroids at inhibit-
ing GM-CSF-enhanced eosinophil survival correlates
closely with their affinity for the GR (Lamas et al.,
1991). Significantly, the rank order of potency is similar
to that found for steroid-induced inhibition of AA metab-
olism from human lung (Schleimer et al., 1986) and
histamine release from human basophils (Schleimer et
al., 1981). In contrast, the steroid sex hormones b-estra-
diol and testosterone are not anti-inflammatory in eo-
sinophils and, as would be predicted, have very weak
affinity for the GR (Lamas et al., 1991). It is notable that
eosinophils purified from the peripheral blood of steroid-
insensitive individuals with hypereosinophilia fail to
bind [3H]dexamethasone (Prin et al., 1989).

2. Maturation. It is well established that glucocorti-
coids inhibit the formation of eosinophil-rich colonies in
in vitro bone marrow colony assays (Bjornson et al.,
1985; Slovick et al., 1985; Butterfield et al., 1986), but
interpretation of the data is often difficult as cells, in
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addition to eosinophil progenitors, are usually present in
the cultures (Gleich et al., 1996). The possibility that
steroids inhibit eosinophil colony growth directly was
initially suggested by results published by Bjornson and
colleagues (1985) who showed that the proliferation of
eosinophil progenitors obtained from the peripheral
blood and bone marrow was significantly inhibited (from
49 to 4 colonies) by hydrocortisone. Significantly, the
reduction in colony frequency was not prevented when
adherent or E-rossetting cells were removed, or when
cyclosporin A, which suppresses the activity of T lym-
phocytes, was included in the cultures. However, in con-
trast to that study, Slovick et al. (1985) reported that
glucocorticoids had no effect on eosinophil colony growth
when purified progenitors that were devoid of mononu-
clear cells and T lymphocytes were used. The finding
that steroids suppressed the release of a colony-stimu-
lating factor(s) from human monocytes led Slovick and
colleagues to conclude that eosinophil maturation is
blocked indirectly through the suppression of cytokine
release from accessory cells present in the cultures. Per-
suasive evidence for this latter contention was provided
10 years later in a study where Shalit et al. (1995) were
unable to demonstrate an inhibitory action of steroids on
the formation of eosinophil colonies when purified
CD341 primitive hematopoietic cells were stimulated
with IL-3, IL-5, and GM-CSF. Thus, on balance, glu-
cocorticoids probably suppress eosinophil maturation by
tempering the production and/or release of IL-5 and
other eosinopoietic factors from cells within the bone
marrow rather than by directly affecting CD341 progen-
itors (Sanderson et al., 1985; Yamaguchi et al., 1988b;
Sher et al., 1990; Rolfe et al., 1992).

3. Adhesion and Adhesion Molecule Expression. Stud-
ies performed in the late 1970s and early 1980s demon-
strated that oral administration of prednisolone to hu-
man volunteers resulted in a partial inhibition of serum-
induced adherence of whole blood eosinophils studied ex
vivo (Clark et al., 1979; Altman et al., 1981). In those
investigations, the effect was transient and a partial
recovery was seen 24 to 48 h after steroid administra-
tion. Paradoxically, eosinophils purified from whole
blood were insensitive to the inhibitory effect of the
steroid, an effect shared by purified eosinophils studied
in vitro (Altman et al., 1981). Those latter findings are
entirely consistent with a more recent investigation
which failed to demonstrate an inhibitory effect of
budesonide on the adhesion of human eosinophils to
HUVECs stimulated with PAF, fMLP, IL-1b, and IL-4
(Kaiser et al., 1993). Collectively, these results lend sup-
port to the idea that steroids suppress the accumulation
of eosinophils at sites of inflammation by acting indi-
rectly, possibly by inhibiting the generation of chemoat-
tractants.

Despite their apparent inability to attenuate adhesion
per se, glucocorticoids are reported to block the up-reg-
ulation of certain adhesion molecules on eosinophils.

Thus, the increased expression of ICAM-1, promoted by
IL-3, IL-5, and GM-CSF, is partially reduced by dexa-
methasone over the concentration range (1–100 nM)
predicted for a GR-mediated effect (Guida et al., 1994).
Hartnell et al. (1992a) also have documented that dexa-
methasone effectively suppresses IL-3-induced CR3 re-
ceptor expression although this was not confirmed in a
subsequent study where the expression of CD11b by
PAF and fMLP was examined (Tomioka et al., 1993).
The reason for this discrepancy is unclear, but it is
possible that steroids preferentially prevent the tran-
scription of the gene encoding CD18 (the common b
chain of the CD11 family) rather than the a chain of CR3
(i.e., CD11b).

4. Cell Survival and Apoptosis. As described in XII.H,
certain cytokines, in particular IL-3, IL-5, GM-CSF, and
IFNg, can markedly prolong the survival of eosinophils
in vitro for days or even weeks. However, eosinophils
undergo apoptosis if they are exposed to glucocorticoids
even in the continued presence of cytokine (Lamas et al.,
1989, 1991; Cox et al., 1991; Wallen et al., 1991;
Hallsworth et al., 1992; Mullol et al., 1995; Adachi et al.,
1996; Druilhe et al., 1996; Kitagaki et al., 1996; Meagher
et al., 1996; Nittoh et al., 1998; Hagan et al., 1998). This
fundamental finding has led to the proposal that surviv-
al-enhancing cytokines maintain eosinophil viability by
suppressing apoptosis (Williams et al., 1990). Pharma-
cological evidence suggests that steroid-induced apopto-
sis is a GR-mediated process because it is prevented by
the GR antagonist RU 38486 (Meagher et al., 1996;
Nittoh et al., 1998). With the exception of IFNg (Her et
al., 1991), the ability of glucocorticoids and cytokines to
modulate eosinophil survival is mutually antagonistic
(Her et al., 1991) where the effect of a steroid can be
overcome in the presence of higher concentrations of
IL-3, IL-5, or GM-CSF. It is curious that although ste-
roids promote the apoptosis of human eosinophils, they
enhance the survival of human neutrophils under simi-
lar experimental conditions (Cox, 1995; Meagher et al.,
1996; Nittoh et al., 1998); the reason for this divergent
effect is unknown.

The precise molecular details of how steroids regulate
eosinophil survival are unknown and multiple possibil-
ities exist. In addition to inhibiting the biosynthesis of
cytokines from other “supporting” cells, steroids clearly
act directly on eosinophils to modulate their longevity.
Some of the more attractive processes that are under
intense investigation include antagonism of the action of
survival-enhancing cytokines, which could be at the
level of suppressing the de novo generation and/or re-
lease of stored cytokines such as GM-CSF (Levi Schaffer
et al., 1995), and down-regulating the expression of cer-
tain cytokine receptors. It is likely that glucocorticoids
also induce or repress certain genes that regulate apo-
ptosis, independent of their ability to modulate the ac-
tion of survival-enhancing cytokines. Indeed, in contrast
to certain T lymphocytes, protein synthesis inhibitors
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such as actinomycin D and cycloheximide promote apo-
ptosis of eosinophils (Yamaguchi et al., 1991). Although
a variety of effector molecules have been implicated in
the final common pathway leading to programmed cell
death including Bax (Oltvai et al., 1993), Bcl-2 (Nunez et
al., 1990; Sentman et al., 1991), Bcl-xS (Boise et al.,
1993), Bcl-xL (Boise et al., 1993), cyclins (Sherr, 1993;
Shi et al., 1994), p53 (Yonish-Rouach et al., 1991; Lowe
et al., 1993), c-myc (Shi et al., 1992), and ICE (Barinaga,
1994; Vaux et al., 1994), little information is available
for the eosinophil. However, possible clues to the mech-
anism of action of steroids can be derived from the ob-
servation that the enhanced survival of human eosino-
phils effected by IL-5 is associated with increased
expression of Bcl-2 and Bcl-xL (Ochiai et al., 1997; Dib-
bert et al., 1998). Therefore, an action of steroids on the
expression of these proteins is possible. An additional
site of action is the pathway that promotes CD95L-
induced apoptosis. Druilhe and coworkers (1996) re-
ported that cross-linking CD95 in cytokine-deprived eo-
sinophils with an “agonistic” CD95L monoclonal
antibody increased the number of apoptotic nuclei by a
mechanism that was significantly enhanced by dexa-
methasone.

Although much is to be learned of eosinophil apoptosis
and its control, it is clearly a highly regulated process
with unique characteristics (Adachi et al., 1996; Druilhe
et al., 1996; Meagher et al., 1996). It is tempting to
speculate that the ability of steroids to resolve eosino-
philic inflammation might be due, in part, to the induc-
tion of apoptosis.

5. Degranulation. The effect of steroids on granule
protein release from eosinophils is unclear. A study by
Hallam and coworkers (1982) demonstrated that rela-
tive high concentrations (100 nM to 1 mM) of methyl
prednisolone suppressed the ability of eosinophils, har-
vested from the peritoneal lavage fluid of N. brasiliensis-
infected rats, to kill chicken erythrocytes in an antibody-
dependent manner. That effect was abolished by
cycloheximide, suggesting that the steroid was promot-
ing new protein synthesis. Similarly, pretreatment of
human eosinophils for 24 h with hydrocortisone effec-
tively inhibited the secretion of ECP in response to se-
rum-coated Sephadex beads (Winqvist et al., 1984).
Again, evidence that the effect of hydrocortisone was
transcriptional is suggested by an earlier study of Venge
and Dahl (1989) who reported that acute exposure of
eosinophils to steroids was poorly effective under com-
parable experimental conditions. Although the above
results suggest that steroids can modulate the secretory
event of eosinophil leukocytes, other data accrued more
recently have not been able to confirm those findings.
Indeed, Kita et al. (1991c), using a panel of steroids
(hydrocortisone, dexamethasone, methyl prednisolone),
did not detect any inhibition of IgG-induced EDN re-
lease from human eosinophils after a prolonged period of
incubation or when the exocytotic response was en-

hanced by IL-5 (Kita et al., 1991c). Their results are
entirely consistent with other studies performed with
human neutrophils where dexamethasone was inactive
in blocking the release of MPO (Schleimer et al., 1989).
The explanation for this inconsistency is unresolved but
could reflect the nature of the degranulation-evoking
stimulus and/or the identity of product secreted. If ste-
roids are generally unable to prevent eosinophil degran-
ulation, then their activity reported in vivo implies that
they act indirectly on other elements that can affect the
secretory response. In this respect, Sensi and colleagues
(1997) noted that the steroid flunisolide significantly
reduced the level of ECP in nasal secretions taken from
children with chronic allergic rhinitis.

6. Chemotaxis. The ability of corticosteroids to inhibit
directed and random migration of eosinophils was first
documented in 1975 using cells harvested from a patient
with rheumatoid arthritis (Goetzl et al., 1975). Shortly
afterward, it was reported that the chemotaxis of guinea
pig eosinophils was similarly suppressed by corticoste-
roids (Gauderer and Gleich, 1978). Experiments per-
formed 20 years later with a murine model of cutaneous
eosinophilia have confirmed those original observations
and established, using 111I-labeled eosinophils from a
donor mouse, that antigen-, PAF-, MIP-1a-, and LTB4-
induced eosinophil accumulation does not require an
action on the bone marrow (Teixeira et al., 1998). How-
ever, despite these aforementioned data, the direct effect
of steroids on eosinophil chemotaxis is equivocal. For
example, in vivo treatment of normal subjects with pred-
nisolone for 24 h inhibited subsequently the ability of
endotoxin-activated serum to stimulate the migration of
eosinophils in vitro (Clark et al., 1979). In a comparable
study, eosinophil migration effected by SOZ was simi-
larly inhibited by hydrocortisone and methylpred-
nisolone (Altman et al., 1981). However, in vitro studies
have provided conflicting results. Thus, although Kuri-
hara et al., (1989) failed to detect any inhibitory effect of
dexamethasone on PAF-induced eosinophil migration
after a 6-h pretreatment period, Prin and colleagues
(1989) noted a modest suppression of migration al-
though the concentration of dexamethasone used in that
study was approximately 1000-fold higher than its af-
finity for the GR receptor.

7. Effects on Transcription of Genes Relevant to Eosin-
ophil Function. Steroids can effectively increase and
decrease transcription of many genes that produce pro-
teins relevant to normal eosinophil function and the
aberrant behavior noted in asthma and allergy. How-
ever, with the exception of IL-8 and MCP-1, whose se-
cretion from human eosinophils is suppressed by dexa-
methasone with an IC50 (10 nM) consistent with a direct
interaction at the GR (Miyamasu et al., 1998), there are
no GREs in the upstream promoter region of many genes
that encode cytokines. In contrast, steroids have a pro-
found ability to up-regulate cytokine receptor expression
on many cell types which presumably could enhance
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their sensitivity to endogenous activating ligands (see
Wiegers and Reul, 1998).

8. Activation of the NADPH Oxidase. Exposure of ad-
herent eosinophils to a variety of stimuli (e.g., IL-5,
fMLP, GM-CSF) that activate the NADPH oxidase re-
sults in a slow and protracted generation of oxygen-
derived free radicals that can last for several hours. The
possibility that new protein synthesis is required for this
response is suggested by the finding that high concen-
trations of dexamethasone inhibit the release of super-
oxide anions in response to SOZ (Evans et al., 1990). A
GR-mediated mechanism is apparently responsible for
this effect because it is prevented in cells pretreated
with the steroid receptor antagonist, RU 38486 (Evans
et al., 1990).

9. Antigen Presentation. In a study by Guida et al.
(1994), the steroids dexamethasone and hydrocortisone
markedly enhanced the expression of the MHC class II
antigens HLA-DR and HLA-DP on the surface of human
peripheral blood eosinophils in response to IL-3, IL-5,
and GM-CSF. That effect was observed at concentra-
tions (10 nM) of the steroids approximately equal to
their affinity for the GR and, significantly, was associ-
ated with an increased ability of the cells to present
antigen (Guida et al., 1994). A third MHC class II mol-
ecule, HLA-DQ, generally, was not induced although in
one donor, exposure of eosinophils to dexamethasone
and IL-3 resulted in high levels of expression (Guida et
al., 1994).

F. Estrogen

Uterine eosinophilia is induced in rats following the
administration of estrogen (Tchernitchin et al., 1974;
Katayama et al., 1998). This observation, which was
first made in the mid 1970s, led to the proposal that
eosinophil activation is responsible for a number of early
oestrogenic responses (Tchernitchin et al., 1974). It was
further hypothesized that eosinophils express estrogen
receptors (A. Tchernitchin et al., 1976; Tchernitchin et
al., 1979) of the uterine type II subtype (Lyttle et al.,
1984, 1989), which were responsible for the localization
of eosinophils to small blood vessels of the uterine wall
(X. Tchernitchin et al., 1976). However, it is now be-
lieved that eosinophil migration is elicited by chemotac-
tic factors released from the uterus in response to estro-
gen (Lee et al., 1989) that include complement C3 (Leiva
et al., 1991) and cyclophilin (Xu et al., 1992). Further-
more, the preferential accumulation of eosinophils in the
uterus may be due to interactions between eosinophil
integrins (principally a6 and b2), which are up-regulated
by estrogen, and uterine extracellular matrix proteins
such as laminin (Katayama et al., 1998).

Although there are reports showing increased estro-
gen binding to eosinophils after stimulation with C5a
(Klebanoff et al., 1977) and during phagocytosis (Kle-
banoff et al., 1977), and that 17b-estradiol induces eo-
sinophil degranulation both in vivo and in vitro (Tcher-

nitchin et al., 1985; Silva et al., 1997), the existence of
bone fide estrogen receptors is questionable. Indeed,
although estrogen binding correlates with eosinophil
numbers in the uterus (Lyttle et al., 1984, 1989), in vitro
culture of rat uterine cells (which lack eosinophils) with
17b-estradiol stimulates the expression of nuclear type
II-binding sites (Markaverich et al., 1986), suggesting
that the smooth muscle itself is the primary source of
estrogen receptors.

G. Lazaroids

Lazaroid is a generic term that describes a series of 21
amino steroids that are devoid of glucocorticoid and min-
eralocorticoid activity. These molecules are based on the
methylprednisolone structure but lack the critical 11b-
hydroxyl moiety present in glucocorticosteroids. Al-
though initially designed as inhibitors of iron-dependent
lipid peroxidation, they have been examined in a num-
ber of in vitro and in vivo models for a variety of disor-
ders. One of these, U-75412E, given by aerosol to sensi-
tized rats, markedly attenuated the number of
eosinophils that appeared in the BAL fluid after allergen
challenge (Richards et al., 1991a, 1992). The effect was
dose-dependent and not associated with a reduction in
the weight of the thymus or adrenal glands that are
typical glucocorticoid side effects. Similar results were
reported by Johnson et al. (1992) where topical admin-
istration of antigen to the airways of beagle dogs over a
period of 6 weeks resulted in a pulmonary eosinophilia
that was significantly attenuated by the lazaroid
U-78517F. The efficacy of lazaroids also has been con-
firmed in a sensitized primate model of allergic inflam-
mation with the demonstration that they suppress an-
tigen-induced pulmonary eosinophilia (Johnson and
Stout, 1993). The mechanism of action of these novel
steroids has not been elucidated but in vitro experi-
ments suggest that it does not apparently involve an
interaction with the GR (Richards et al., 1991a) and it is
reasonable to conclude, therefore, that they act in vivo
also by a GR-independent mechanism. Richards et al.
(1992) have proposed that the T lymphocyte could be a
primary target for lazaroids due to their intrinsic anti-
oxidant activity (Braughler et al., 1988) but this is yet to
be confirmed.

H. Retinoids

Derivatives of vitamin A, or retinoids, evoke a variety
of fundamental biological processes through interacting
with distinct nuclear receptors that belong to a super-
family of proteins that include steroid, vitamin D, and
thyroid hormone receptors, the peroxisome proliferator-
activated receptor, the insect edysteroid receptor, and a
number of “orphan” receptors whose ligands are cur-
rently unknown (Pfahl, 1993; Pemrick et al., 1994). Two
families of retinoid receptors have been identified: the
retinoic acid receptors (RARa, RARb, and RARg) and
the retinoid X receptors (RXRa, RXRb, and RXRg).
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Moreover, current data are consistent with the idea that
there are RAR- and RXR-dependent pathways of gene
regulation and that individual receptors influence the
expression of specific genes. This diversity of gene reg-
ulation has permitted the use of naturally occurring and
synthetic retinoids clinically where they have been
shown to be particularly effective in cutaneous inflam-
matory diseases including psoriasis and acne (Pfahl,
1993; Pemrick et al., 1994).

One potential reason for their therapeutic activity
might relate to their ability to inhibit the synthesis
and/or release of proinflammatory mediators. Lehman
and Henderson (1990) compared the ability of eight reti-
noids (tretinoin, isotretinoin, retinol, retinal, acitretin,
retinyl palmitate, atretinate, Ro 15-0778) to suppress
the elaboration of LTC4 from A23187-stimulated equine
eosinophils and reported that five of them (tretinoin,
isotretinoin, retinol, retinal, and acitretin) were, indeed,
active, although the arotinoid, Ro 15-0778, potentiated
LTC4 release. Although the molecular mechanism un-
derlying this effect was not investigated, it was specu-
lated, based on those limited data, that certain retinoids
might be of benefit in the treatment of diseases, such as
bronchial asthma, where peptido-leukotrienes play a
pathogenic role (Lehman and Henderson, 1990).

I. Cromones

Cromones, including sodium cromoglycate and
nedocromil sodium, are in widespread use for the pro-
phylaxis of asthma and have been shown to inhibit the
LPR following allergen provocation and control many of
the symptoms of chronic asthma (Crimi et al., 1989;
Brogden and Sorkin, 1993; Twentyman et al., 1993).
Although the precise cellular targets through which
these drugs exert their beneficial effects are unknown,
they modulate directly a number of functional responses
in eosinophils that could account or contribute to their
clinical efficacy. In the context of host defense and in-
flammation, both of the aforementioned cromones re-
duce the number of complement and IgG rosettes on
eosinophils and attenuate their propensity to kill schis-
tosomula of S. mansoni in response to fMLP (Moqbel et
al., 1986, 1988, 1989; Kay et al., 1987). Serum-opsonised
zymosan-, C5a-, PAF-, and LTB4-induced chemotaxis of
human eosinophils under in vitro conditions is similarly
suppressed by sodium cromoglycate and in some cases
nedocromil sodium (Bruijnzeel et al., 1989, 1990; War-
ringa et al., 1993a). Moreover, in human eosinophils
primed with GM-CSF and IL-3, nedocromil sodium at
low nanomolar concentrations is extremely effective at
preventing fMLP- and IL-8-induced chemotaxis and
similarly attenuates the chemotactic response of fMLP
on circulating eosinophils harvested from patients with
allergic asthma 3 h after allergen provocation (Warringa
et al., 1993a). In another study, Abdelaziz and col-
leagues (1997) reported that nedocromil sodium inhib-
ited the enhancement of eosinophil chemotaxis, adher-

ence to human endothelial cells, and release of soluble
ICAM-1 provoked by conditioned medium obtained from
human bronchial epithelial cells. Thus, epithelium-de-
rived mediators can potentiate eosinophil activity in a
nedocromil-sensitive manner which may represent a po-
tential site where cromones exert their anti-inflamma-
tory activity in vivo.

A number of in vitro and in vivo studies have studied
the effect of cromones on eosinophil degranulation in
response to diverse stimuli with mixed results. Palczyn-
ski et al. (1989) reported that disodium cromoglycate
suppressed effectively eosinophil degranulation in 26 of
30 asthmatic patients that were sensitive to deuterium
oxide (a stimulus that promotes degranulation in many
asthma sufferers but not in normal individuals). Simi-
larly, Spry and coworkers (1986) found that nedocromil
sodium inhibited the exocytosis of preformed granule-
associated proteins. In contrast, the ECP content of lach-
rymal secretions from 30 patients with vernal kerato-
conjunctivitis was poorly suppressed by disodium
cromoglycate (4% solution for 10 days) which was in
keeping with its limited effect on clinical symptoms
(Leonardi et al., 1997).

The effect of cromones on the production of lipid me-
diators from human eosinophils is similarly unclear.
Nedocromil sodium has been reported to be active (Brui-
jnzeel et al., 1989; Moqbel et al., 1989; Sedgwick et al.,
1992a) and inactive (Burke et al., 1990) in suppressing
the production of LTC4 in response to A23187, fMLP,
and SOZ. Again, the reason(s) for this difference is not
established but might reflect, to some extent, differences
in degranulation-evoking stimulus or functional antag-
onism.

Other potentially beneficial actions of cromones in-
clude their ability to inhibit the enhanced survival of
human eosinophils afforded by IL-5 (Resler et al., 1992)
and epithelial cell-derived cytokines (Mullol et al., 1997),
the development of a hypodense phenotype in eosino-
phils cultured in 50% conditioned medium from bovine
pulmonary endothelial cells (Sedgwick et al., 1992a) and
the restoration (toward normal) of the eosinophil count
in rectal inflammatory exudates from patients with ul-
cerative colitis (Rampton et al., 1982). Devalia and co-
workers (1992) reported that the incubation of human
eosinophils with nedocromil sodium along with an acti-
vating stimulus, such as a phorbol diester or opsonized
latex beads, prevented their ability to impair the normal
ciliary beat frequency of human cultured epithelial cells
under in vitro conditions. This is an interesting obser-
vation given that the clearance of particulate matter
from the airways is critically dependent upon uncompro-
mised ciliary beat activity. Therefore, it might be pre-
dicted that nedocromil sodium would maintain this key
function when the airways are inflamed. Given the wide
spectrum of anti-inflammatory effects produced by
nedocromil sodium, it is curious that cromones do not
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inhibit superoxide anion generation from human eosin-
ophils (Sedgwick et al., 1992a).

Relatively few studies have formally examined the
effect of cromones in vivo. Nevertheless, cromones have
been shown to reduce pulmonary eosinophilia in labora-
tory animals in response to diverse stimuli including
carrageenan, PAF, and allergen (Hutson et al., 1988;
Abraham, 1989; Church et al., 1989; Sanjar et al., 1989,
1990b,c; Kings et al., 1990; Pretolani et al., 1990; Schel-
lenberg et al., 1991; Saleh et al., 1996). Likewise,
nedocromil has been reported to suppress allergen-in-
duced eosinophilia in asthmatic subjects (Calhoun et al.,
1993) and to reduce bronchial hyperresponsiveness (Aal-
bers et al., 1991).

The mechanism of action of cromones is unknown but
their molecular target is likely to be extracellular since
both nedocromil sodium and sodium cromoglycate are
extremely polar molecules and highly ionized at physi-
ological pH; thus, they are unlikely to gain access to the
cells’ interior. A number of mechanisms have been pro-
posed to account for their therapeutic activities in
asthma but none are entirely satisfactorily. Interested
readers should consult Eady and Norris (1997) for a
detailed evaluation of current theories.

J. Loop Diuretics

Lung function measurements in normal subjects and
in individuals with asthma have demonstrated that the
loop diuretic frusemide effectively attenuates broncho-
constriction induced by a variety of indirect airway chal-
lenges including ultrasonically nebulized distilled water
(Robuschi et al., 1988), exercise (Bianco et al., 1988),
allergen (Bianco et al., 1989), metabisulphite (Nichol et
al., 1990), and adenosine 59-monophosphate (O’Connor
et al., 1991), yet it is generally inactive in attenuating
the bronchoconstriction elicited by histamine and
methacholine which act directly on airway smooth mus-
cle to increase bronchomotor tone (Nichol et al., 1990;
O’Connor et al., 1991, but see Polosa et al., 1995). The
biochemical basis for the protective action of frusemide
is apparently unrelated to its ability to inhibit the Na1/
K1/2Cl2 cotransporter, which underlies its diuretic
mechanism of action, since bumetanide, a more potent
inhibitor of the cotransporter in the loop of Henlé, is
inactive in the same indirect challenges (O’Connor et al.,
1991). To account for this anomaly, an alternative mech-
anism has been proposed that involves the inhibition of
transmembrane Cl2 fluxes (Chung and Barnes, 1992).
The finding that bronchoconstriction evoked by stimuli
such as adenosine 59-monophosphate is due to the re-
lease of spasmogens from proinflammatory cells
prompted studies to assess the effect of frusemide, bu-
metanide, and various putative Cl2 channel blocking
drugs on indices of eosinophil activation.

In guinea pig peritoneal eosinophils, frusemide, but
not bumetanide, inhibits LTB4-evoked H2O2 generation
in a concentration-dependent manner with a potency in

the low micromolar range (Perkins et al., 1992). A sim-
ilar result was evoked by DIDS and NPPB (Perkins et
al., 1992) which are known to block small and large
conductance Cl2 channels in smooth muscle and epithe-
lial cells (Hanrahan et al., 1985; Wangemann et al.,
1986). Despite those data, LTB4-induced activation of
the NADPH oxidase is it not dependent upon Cl2 influx
since H2O2 is still formed when Cl2 are omitted from the
extracellular media (Perkins et al., 1992). Based on the
aforementioned data the inhibitory mode of action of
frusemide, DIDS and NPPB do not seem to involve an
inhibition of Cl2 influx. Although the mechanism(s) of
action of these drugs is currently obscure, their effects
are agonist-dependent. Thus, in contrast to LTB4, the
H2O2 generated by SOZ has an absolute requirement for
extracellular Cl2 (Perkins et al., 1992), indicating that
SOZ and LTB4 promote the assembly and subsequent
activation of the NADPH oxidase complex by recruiting
different cellular signaling pathways. This conclusion is
supported by pharmacological studies that show that
frusemide, DIDS, and NPPB are inactive when SOZ is
used as the stimulus (Perkins et al., 1992).

K. Sodium Channel-Blocking Drugs

Ohnishi and colleagues (1996) reported that the intro-
duction of BAL fluid from 25 of 40 patients with symp-
tomatic asthma to human peripheral blood eosinophils
maintained in culture inhibited their survival. The caus-
ative factor(s) was of low molecular weight, heat stable,
and its effect was overcome by an excess of exogenous
cytokines (IL-5, IL-3, GM-CSF). Moreover, there was a
highly significant positive correlation between the rate
of enhanced death and the concentration of lidocaine in
the BAL fluid, indicating that the local anesthetic used
for bronchoscopy might represent the inhibitory factor.
This possibility is strongly suggested by the ability of
exogenous lidocaine and other local anesthetics includ-
ing tetracaine, dibucane, benoxinate, proparacaine, pro-
caine, and bupivacaine to inhibit human eosinophil sur-
vival (Ohnishi et al., 1996; Okada et al., 1998). The
interaction of low concentrations of lidocaine with hu-
man eosinophils is seemingly specific because its effects
are overcome by IL-3, IL-5, and GM-CSF; however,
higher concentrations of the anesthetic are not overcome
by hematopoietic cytokines indicative of functional an-
tagonism (Ohnishi et al., 1996; Okada et al., 1998). Cu-
riously, the enhanced survival of human eosinophils af-
forded by IL-5 is significantly more sensitive to lidocaine
than cells treated identically with IL-3 or GM-CSF
(Okada et al., 1998). Thus, despite the common b chain
shared by the GM-CSF, IL-3, and IL-5 receptor (see
VI.A), difference in the responsiveness of eosinophils to
these cytokines is clearly apparent and corroborates the
results obtained from binding studied with 125I-labeled
IL-5 (Lopez et al., 1991). Lidocaine also antagonizes the
ability of IFNg to enhance eosinophil survival (Ohnishi
et al., 1996).
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The inhibitory action of lidocaine on eosinophils is not
limited to survival but seems to be restricted to func-
tional responses effected by IL-5 and related cytokines.
Thus, the generation of superoxide by human eosino-
phils adherent to culture plastic via a b2 integrin-depen-
dent process and stimulated by IL-5 also is attenuated
by lidocaine, whereas activation of the NADPH oxidase
by PAF and immobilized IgG is insensitive (Okada et al.,
1998).

Collectively, the limited results described above sug-
gest that lidocaine and its analogs behave as glucocorti-
comimetics although the mechanism of action is almost
certainly different (Gleich et al., 1996; Okada et al.,
1998). Studies performed by Okada and coworkers
(1998) have shown that lidocaine does not inhibit the
binding of 125I-labeled IL-5 to human eosinophils or the
subsequent changes in protein tyrosine phosphoryla-
tion. Furthermore, lidocaine and its analogs do not mod-
ify eosinophil survival by preventing Na1 influx or by
inhibiting the Na1/H1 antiporter (Okada et al., 1998).
Instead, pharmacological evidence points to an inhibi-
tory action of lidocaine at ATP-sensitive K1 channels
(Bankers-Fulbright et al., 1998).

Preliminary clinical investigations have shown lido-
caine to be steroid-sparing (Gleich et al., 1996; Hunt et
al., 1996) although indices of inflammation, like eosino-
phil numbers in BAL fluid, have not been reported.

L. Ketotifen

Ketotifen has a pharmacology that supports its utility
in the treatment of allergic inflammatory diseases such
as asthma (Grant et al., 1990). In vitro studies have
demonstrated that several markers of eosinophil activa-
tion are suppressed by ketotifen. Using eosinophils pu-
rified from the peripheral blood of 25 patients with
asthma, Kishimoto and colleagues (1990) found that ke-
totifen inhibited the release of LTC4 and the morpholog-
ical changes evoked by anti-IgG (Kishimoto et al., 1990).
Chemotaxis, degranulation, actin polymerization, induc-
tion of a hypodense phenotype, and, at high concentra-
tions, the enhanced survival of eosinophils effected by
IL-5 are also reported to be suppressed by ketotifen
(Podleski et al., 1984; Miyasato et al., 1988; Morita et al.,
1990b; Nabe et al., 1991; Hossain et al., 1994a).

Comparable data are available from in vivo investiga-
tions. Prophylactic administration of ketotifen to ba-
boons inhibits the accumulation of eosinophils into the
BAL fluid evoked by the intratracheal administration of
PAF (Arnoux et al., 1988). Identical results have been
described in guinea pigs (Sanjar et al., 1989; 1990b,c;
Kings et al., 1990) and mice (Nagai et al., 1996) where
PAF-, allergen-, and cytokine/lymphokine-induced pul-
monary eosinophilia and the increase in IL-5 levels in
BAL fluid are significantly attenuated. Ketotifen also
reduces the number of eosinophils located in the endo-
metria of estrogen-challenged rats and inhibits degran-

ulation without affecting migration per se (Soto et al.,
1989).

Few studies have evaluated the effect of ketotifen on
direct or indirect indices of inflammation in humans.
However, the limited data available suggest some de-
gree of efficacy. In children presenting with asthma or
atopic dermatitis, an apparent correlation exist between
the clinical efficacy of ketotifen and normalization of
peripheral blood eosinophil numbers during treatment
(Uehara et al., 1988; Ikari and Matsunaga, 1989; Grant
et al., 1990). Similarly, ketotifen inhibits the cutaneous
eosinophilia in response to allergen (Snyman et al.,
1992) and prophylactic treatment of patients with polli-
nosis over the period of natural allergen provocation
with ketotifen significantly inhibits the increase in se-
rum ECP levels and eosinophil count (Kato et al., 1994).

Evidence for a direct effect of ketotifen on eosinophil
function is suggested from two clinical investigations
with comparable results (Hoshino, 1994; Hoshino et al.,
1997). In one of those, 25 patients with atopic asthma
were given ketotifen (1 mg twice daily for 8 weeks) or
placebo in a double-blind parallel group study and eo-
sinophil activation assessed in biopsies taken by fiber-
optic bronchoscopy (Hoshino et al., 1997). Relative to
placebo, ketotifen reduced the number of EG21 cells in
the lamina propria, indicating eosinophil stabilization,
which was associated with an improvement in asthma
symptoms and a reduction in bronchial hyperreactivity
(Hoshino et al., 1997).

M. Cyclosporin A, Tacrolimus, and Rapamycin

Evidence now exists that asthma represents a special-
ized chronic inflammatory condition that may represent
a form of cell-mediated immunity where cytokines re-
leased from T lymphocytes promote pulmonary eosino-
philia. This possibility has prompted several groups of
investigators to assess the efficacy of drugs, other than
steroids, in the treatment of chronic severe asthma (Cor-
rigan and Kay, 1996). One group of potential therapeutic
agents are the immunosuppressants, exemplified by cy-
closporin A, tacrolimus (FK 506), and rapamycin (siroli-
mus) (Bonham and Thompson, 1997).

Cyclosporin A is an undecapeptide isolated from the
fungus Tolypocladium inflatum gams and tacrolimus is
a macrolide produced from the fermentation of a strain
of Streptomyces tsukubaensis. Although these two mol-
ecules are structurally dissimilar, they have closely re-
lated biological activities, in particular their ability to
alter gene expression. In contrast rapamycin, a macro-
lide antibiotic produced as a fermentation product of
Streptomyces hygroscopicus, is believed to exert its bio-
logical effects by interfering with cytokine/growth factor
receptor signaling, despite its close structurally similar-
ity to tacrolimus (Bonham and Thompson, 1997).

A current dogma is that cyclosporin A and tacrolimus
exert their effects by interacting specifically with intra-
cellular proteins (collectively known as immunophilins)
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termed cyclophilin and FK506-binding protein, respec-
tively (Schreiber, 1991; Thompson, 1993; Wiederrecht et
al., 1993; Fruman et al., 1994; Bonham and Thompson,
1997). The drug/immunophilin heterodimer then forms
a tertiary complex with a number of other proteins in-
cluding calcineurin (protein phosphatase 2B) which
modulates the activity of transcription factors such as
the cytoplasmic component of NF-AT (Flanagan et al.,
1991; Liu et al., 1991; Clipstone and Crabtree, 1993;
Wiederrecht et al., 1993; Fruman et al., 1994; Bonham
and Thompson, 1997).

1. In Vitro Effects. Cyclosporin A promotes apoptosis
of rat eosinophils (Kitagaki et al., 1996) and, in high
concentrations, attenuates the enhanced survival of hu-
man eosinophils afforded by IL-5; this activity also is
shared by rapamycin and tacrolimus (Hom and Es-
tridge, 1993; Hossain et al., 1994a). Similar data have
been obtained with eosinophils whose viability was en-
hanced by cytokines (IL-3, IL-5, GM-CSF) released from
peripheral blood mononuclear cells harvested from asth-
matic subjects in response to house dust mite (Hossain
et al., 1994b). The finding that the generation of GM-
CSF, IL-3, and IL-8 from A23187-stimulated human
eosinophils is suppressed by tacrolimus and cyclosporin
is consistent with the ability of these drugs to repress
gene transcription (Kita et al., 1991d; Braun et al., 1993;
Hom and Estridge, 1993; Kohyama et al., 1997). Some
specificity of action is suggested by the inability of cy-
closporin A to block the expression of IL-8 mRNA and
protein from human eosinophils exposed to MBP (Kita et
al., 1995). Interestingly, although rapamycin does not
prevent cytokine generation under identical experimen-
tal conditions, it can antagonize the effect of tacrolimus
when present in a large molar excess which presumably
relates to its close structurally similarity (Hom and Es-
tridge, 1993). On balance, the spectrum of activities of
FK 506, cyclosporin, and rapamycin on eosinophils is
comparable to that established in T lymphocytes and
mast cells. Thus, although eosinophilia is T cell depen-
dent and highly sensitive to tacrolimus and cyclosporin
A (Thompson, 1993; Fruman et al., 1994; Thompson et
al., 1994), similarities in certain signal transduction
pathways between T lymphocytes and eosinophils would
permit immunosuppressants to target the latter directly
in vivo which may prove potentially useful in the treat-
ment of eosinophil-based inflammatory conditions that
do not respond to less aggressive, conventional thera-
pies.

It is noteworthy that the ability of cyclosporin A to
promote apoptosis of murine eosinophils does not seem
to require binding to cyclophilin (Kitagaki et al., 1997).
In fact cyclosporin H, an analog which demonstrates
little affinity toward immunophilins, is as effective as
cyclosporin A at enhancing apoptosis of eosinophils har-
vested from BAL fluid of allergen-challenged mice. A
role for calcineurin and the cytoplasmic component of

NF-AT does not seem to be required for the apoptotic
effect of these drugs.

2. In Vivo Effects. The effect of immunosuppressant
drugs in laboratory models of asthma or eosinophilia has
been widely studied since the late 1980s (Etienne et al.,
1989a; Akutsu et al., 1990; Arima et al., 1991; Elwood et
al., 1992; Boichot et al., 1993; Francischi et al.,
1993a,b,c; Bozza et al., 1994b; Fukuda, 1994; Lagente et
al., 1994a; Tominaga et al., 1995; Teixeira et al., 1996c;
Eum et al., 1997; Williams et al., 1997). One of the first
reports was published by Etienne and colleagues (1989a)
who demonstrated that cyclosporin A abolished the in-
crease in eosinophils in the blood and peritoneal fluid of
rats rendered hypereosinophilic by Sephadex beads or
cyclophosphamide. Those results were essentially con-
firmed in a model of pleural eosinophilia elicited by
intrathoracic administration of LPS (Bozza et al.,
1994b); however, in that study it was concluded, by use
of the monoclonal antibody, Thy-1.0, and dichlorometh-
ylene diphosphonate which deplete T lymphocytes and
macrophages, respectively, that cyclosporin A was not
directly affecting eosinophil trafficking.

Comparable results have been obtained with rapamy-
cin, tacrolimus, and cyclosporin A in rat and guinea pig
models of pulmonary eosinophilia (Arima et al., 1991;
Elwood et al., 1992; Francischi et al., 1993a,b,c; Tomi-
naga et al., 1995; Teixeira et al., 1996c; Eum et al., 1997;
Williams et al., 1997). In a detailed histological study,
Lagente et al. (1994a) measured the accumulation of
eosinophils in the peribronchial area of sensitized, chal-
lenged guinea pigs and in naı̈ve animals exposed to PAF
and LTB4. Using Luna’s reagent, which labels eosino-
phil granule contents, they reported that cyclosporin
A (10 mg/kg orally 3 times a day for 2 days and then
1 h before allergen exposure) reduced the appearance
of eosinophil degranulation products. Identical results
were described for tacrolimus in allergen-challenged
mice where the number of eosinophils in the BAL fluid
was significantly attenuated; however, this effect is
likely to be due to the suppression of IL-5 release
(Eum et al., 1997). In contrast, an in vivo model of
allergen-induced cutaneous eosinophilia in guinea
pigs was not sensitive to cyclosporin A, given system-
ically, under conditions where dexamethasone was
effective. Similar results were obtained in naı̈ve ani-
mals where eosinophil influx into the skin was
achieved by the local administration of PAF, SOZ, or
LPS (Teixeira et al., 1996c). Thus, the eosinophil
might not be an important target for cyclosporin A in
that model of allergic inflammation.

Clinical evidence points toward a potential therapeu-
tic activity of immunosuppressants. Cyclosporin A has
been reported to reduced the amount of ECP present in
the serum of patients with severe atopic dermatitis (Ca-
proni et al., 1996) and in the lachrymal fluid of individ-
uals with vernal keratoconjunctivitis after chronic (7–14
days) treatment (Leonardi et al., 1995). Moreover, Shu-
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pack et al. (1992) have documented that low-dose cyclo-
sporin A decreases the peripheral blood eosinophil count
in patients with severe psoriasis. Thus, those data would
suggest that cyclosporin A is able to reduce the release of
mediators which promote hematopoiesis, degranulation
and/or, more directly, block those processes which gov-
ern the exocytotic response in eosinophils (Caproni et
al., 1996).

A number of clinical trials have been conducted with
oral cyclosporin A in patients with steroid-dependent,
chronic severe asthma with modest beneficial effects
(Szeczelik et al., 1991; Alexander et al., 1992; Fukuda,
1994). Similarly, cyclosporin A, in low doses (2.5 mg/kg/
day), demonstrates significant clinical efficacy in indi-
viduals with atopic dermatitis (Ross and Camp, 1990;
Wahlgren et al., 1990; Sowden et al., 1991; Salek et al.,
1993). However, the use of immunosuppressants is lim-
ited by side effects, especially nephrotoxicity, and prob-
ably should be considered as a last resort to treat
asthma or dermatitis if oral steroids are inactive.

N. Nitric Oxide

The gas, NO, is formed from L-arginine by a family of
enzymes collectively known as NO synthases and medi-
ates its widespread biological effects primarily through
the stimulation of soluble guanylyl cyclase and the sub-
sequent activation of the cyclic GMP/cyclic GMP-depen-
dent protein kinase cascade. Three NO synthases are
currently defined. Two of these, eNOS and nNOS, are
constitutively expressed and are so denoted to reflect the
tissue (endothelial and neuronal, respectively) where
they were first identified. The third isoenzyme is called
iNOS as it can be induced by LPS and certain cytokines.
eNOS, nNOS, and iNOS are the products of different
genes and have deduced molecular masses of 133, 160,
and 131 kDa, respectively. See Moncada et al. (1997) for
further details.

Many years elapsed after NO was identified and its
significance appreciated before del Pozo et al. (1997)
identified mRNA transcripts and protein for iNOS in
human peripheral blood eosinophils and the human eo-
sinophilic cell line,Eol-3. Subcloning of a 259-bp frag-
ment from three different human eosinophil iNOS cD-
NAs revealed 97% sequence identity with macrophage/
monocyte iNOS (del Pozo et al., 1997). The iNOS in
eosinophils and Eos-3 cells is functional as evinced from
the finding that nitrite is released into the supernatant
of cultured cells by a mechanism that is blocked by the
NO synthase inhibitor, L-NMA (del Pozo et al., 1997).
Using a panel of antibodies, Kobzik et al. (1997) also has
identified the endothelial form of NO synthase in normal
human eosinophils using an immunoperoxidase-based
staining technique and extended those findings to eosin-
ophils present in the airways of asthmatic lung. Promi-
nent labeling of nitrotyrosine was detected within eosin-
ophils in the same lung sections demonstrating that NO
is synthesized in vivo and may be contributing to the

ongoing inflammatory response (Kobzik et al., 1997). In
laboratory animals, iNOS and eNOS protein have been
localized to the cytoplasmic granules of rat peritoneal
eosinophils where they are expressed by approximately
30% and 25% of cells, respectively (Zanardo et al., 1997).
Moreover, these cells generate nitrite in response to LPS
or a combination of LPS with IL-8 or IFNg and this is
blocked with L-NIO (Oliveira et al., 1998).

1. Apoptosis. Beauvais and colleagues (1995b) have
reported that the NO donors azide and hydroxylamine
suppress programmed cell death of cytokine-deprived
eosinophils purified from human peripheral blood. That
effect is presumably a cyclic GMP-driven process for it
was mimicked by dibutyryl cyclic GMP and attenuated
by an inhibitor of soluble guanylyl cyclase, LY 83583.
Those original observations have, to some degree, been
confirmed. Using an eosinophil/U937 coculture system,
Hebestreit and coworkers (1998) reported that anti-
CD95 promoted eosinophil apoptosis by a mechanism
that was prevented when LPS and IFNg were intro-
duced into the culture medium. This pharmacological
intervention up-regulates iNOS gene expression in the
U937 cell population, with a consequent increase in
the liberation of NO that is proposed to then act on the
eosinophils. Compelling evidence that NO was
the U937-derived, antiapoptotic mediator was the find-
ing that L-NMMA and LY 83583 abolished the ability of
LPS/IFNg to rescue eosinophils from CD95-mediated
death. In addition, SNAP, azide, and hydroxylamine
prevented apoptosis of a pure population of freshly iso-
lated human eosinophils which was mimicked by IBMX
(Hebestreit et al., 1998). On face value, the ability of
IBMX to suppress apoptosis is not unexpected; however,
eosinophils lack PDE isoenzymes that hydrolyze cyclic
GMP (Dent et al., 1991, 1994; Souness et al., 1991;
Hatzelmann et al., 1995) which raises the possibility
that the antiapoptotic activity of IBMX is due to the
inhibition of PDE4, the predominant PDE in these cells.
Indeed, this contention is consistent with the greater
ability of dibutyryl cAMP to rescue eosinophils from
CD95-mediated apoptosis when compared to its sister
analog, cyclic GMP (Hebestreit et al., 1998). However,
neither rolipram nor denbufylline promote human eo-
sinophil apoptosis (Hallsworth et al., 1996), raising the
possibility that IBMX acts via a PDE-independent pro-
cess.

Studies in a number of cells including human eosino-
phils (Hebestreit et al., 1998) have established that ap-
optosis resulting from activation of CD95 is associated
with the stimulation an acidic sphingomyelinase (Cifone
et al., 1993; Tepper et al., 1995), resulting in ceramide
formation, an increase in the activity of the MAP kinase
family, JNK (Cahill et al., 1996; Wilson et al., 1996), and
the activation of a number of proteinases that are essen-
tial components of the biochemical machinery that exe-
cute cell death (Martin and Green, 1995). Those en-
zymes degrade nuclear proteins, such as lamins [which
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turnover very slowly in nonapoptotic cells (Oberhammer
et al., 1994)], whose fragments are required for the pack-
aging of condensed chromatin into apoptotic bodies (La-
zebnik et al., 1995).

In human eosinophils, the site(s) at which NO could
act to prevent CD95-mediated apoptosis has been inves-
tigated. In a detailed study, Hebestreit and colleagues
(1998) noted that NO did not reduce CD95 expression or
the CD95-dependent liberation of ceramide. However,
SNAP and dibutyryl cyclic GMP effectively blocked C2-
ceramide-induced eosinophil apoptosis and the activa-
tion of JNK, which was assessed by measuring the phos-
phorylation of c-jun, a component of the transcription
factor AP-1. Furthermore, SNAP and/or dibutyryl cyclic
GMP prevented the activation of various proteinases
that are activated in eosinophils following ligation of
CD95 (Hebestreit et al., 1998) and the degradation of a
74-kDa nuclear protein, lamin B1. Thus, these data sug-
gest that NO blocks CD95-mediated apoptosis by acting
at the level of, or proximal to, JNK but distal to the
generation of ceramide by sphingomyelinase (Hebestreit
et al., 1998).

2. Chemotaxis. The only other index of eosinophil ac-
tivation where NO has been shown to play a role is in
chemotaxis. Zanardo and colleagues (1997) demon-
strated that incubation of rat eosinophils with the NO
synthase inhibitors, L-NAME (nonselective), AMT
(iNOS-selective), and TRIM (nNOS/iNOS-selective) in-
hibited fMLP- and LTB4-induced migration under con-
ditions where D-NAME was inactive. The finding that
the L-NAME-induced effect was completely restored by
SNP and dibutyryl cyclic GMP and mimicked by the
putative inhibitor of soluble guanylyl cyclase, ODQ,
strongly supports the idea that NO promotes chemotaxis
of rat eosinophils by a cyclic GMP-dependent mecha-
nism (Zanardo et al., 1997). In another study eosino-
phils, isolated from rats treated chronically with
L-NAME in the drinking water, were significantly less
sensitive to the chemotaxins, fMLP, PAF, and SOZ when
studied ex vivo. The mechanism of that effect was at-
tributed to the inhibition of NO synthesis, because D-
NAME was inactive and L-arginine, but not D-arginine,
reversed the effect of L-NAME (Ferreira et al., 1996).
The regulation of chemotaxis by NO also is seen in
human peripheral blood eosinophils (Robbins et al.,
1995). Thus, chemotaxis effected by fMLP, PAF, IL-3,
and IL-5 is attenuated by L-NMMA, L-NAME, and ami-
noguanidine, and unaffected by the inactive enantiomer,
D-NMMA; consistent with the rat data described above,
L-arginine and SNP partially restored the effect of L-
NAME (Robbins et al., 1995). Collectively, these data
suggest that many agents that promote chemotaxis do so
by stimulating the production of NO which enhances the
locomotor activity of eosinophils.

3. In Vivo Effects. The effect of chronic treatment of
rats with L-NAME on bradykinin-, PAF-, LPS-, and
carageenan-induced eosinophil migration in model of

pleurisy has been reported (Ferreira et al., 1996). In-
trapleural injection of the aforementioned chemotaxins
resulted in a significant increase in the number of eo-
sinophils found in the pleural cavity at 24 h that was
attenuated in rats given L-NAME but not the inactive
enantiomer D-NAME. Comparable findings have been
reported in a sensitized animal model of pulmonary
eosinophilia (Feder et al., 1997; Ferreira et al., 1998). In
one representative study, the effect of four NOS inhibi-
tors (L-NAME, L-NMMA, L-NIL, aminoguanidine) ad-
ministered to sensitized B6D2F1/J mice by the i.p. route
were evaluated for their ability to modify the number of
eosinophils that appeared in BAL fluid and lung tissue
24 h after antigen challenge. Consistent with all the
currently available data, NAME attenuated pulmonary
eosinophil recruitment in an enantio-selective manner
by a mechanism that was largely prevented by L-argi-
nine. The same result was obtained with aminoguani-
dine and L-NMMA, but not with the iNOS inhibitor
L-NIL. The latter observation is significant, as allergen
challenge had no effect on steady-state level of iNOS
mRNA transcripts or protein in the lungs, but increased
the level of nitrite in the BAL fluid. Thus, it is unlikely
that inducible forms of NO synthase are involved in the
regulation of eosinophilia. In the same study, L-NAME
had no effect on the reduction of eosinophils in the bone
marrow that followed allergen challenge, indicating that
NO-dependent pulmonary eosinophil recruitment is not
due to an enhancement of eosinophil efflux from the
marrow. The site of NO production is unclear but Feder
et al. (1997) have speculated that pulmonary vascular
endothelial cells could be involved in the extravasation
of eosinophils from the circulation into the lung since
these cells are under the control of eNOS and may thus
provide a source of NO. Alternatively, the ability of NO
to inhibit the activity of IFNg-secreting cells could in-
crease the proliferation of Th2 lymphocytes and thereby
the elaboration of IL-5.

O. Cetirizine and Other Second-Generation Histamine
H1 Receptor Antagonists

Cetirizine, a carboxylated metabolite of hydroxyzine,
is a potent, long-acting, second-generation histamine H1
receptor antagonist used in the treatment of atopic der-
matitis, urticaria, and allergic rhinitis (Spencer et al.,
1993). In addition, cetirizine exerts pharmacological ef-
fects distinct from those which arise from an interaction
at H1 receptors (Walsh, 1993, 1997b). With respect to
the eosinophil, cetirizine inhibits several indices of acti-
vation that might contribute to its therapeutic activity
in the treatment of allergic disorders. In vitro studies
have demonstrated that PAF-induced hyperadherence
of human eosinophils to HUVECs is suppressed by ceti-
rizine in the nanomolar range (Sehmi et al., 1993).
Higher concentrations of cetirizine (100 mg/ml) also at-
tenuate the adherence of fMLP-stimulated eosinophils
to resting cultured endothelial cells and the adherence of
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unstimulated eosinophils to endothelial cells exposed to
IL-1 (Kyan Aung et al., 1992), although the clinical
significance of those effects is unclear. Other in vitro
functional responses where cetirizine, at concentrations
achieved therapeutically, is inhibitory include adhesion-
dependent processes such as PAF-induced, eosinophil-
enhanced complement, and IgG-dependent rosette for-
mation and complement-dependent cytotoxicity (Walsh
et al., 1991b), superoxide anion generation from eosino-
phils purified from the blood of allergic subjects (Okada
et al., 1994) and eosinophil migration in response to
fMLP, IL-8, C5a, and LTB4 (Leprevost et al., 1988; De
Vos et al., 1989; Sehmi et al., 1993). Significantly this
latter effect is not mimicked by the antihistamine dex-
chlorpheniramine (Leprevost et al., 1988), suggesting
that the histamine H1 receptor is not involved. Integrin-
dependent activation of the NADPH oxidase in human
normodense eosinophils also is blocked by cetirizine but
high concentrations are required (Piacentini et al.,
1996).

In vivo studies have established that cetirizine atten-
uates cutaneous, pleural, and pulmonary eosinophil in-
filtration in response to several stimuli which is consis-
tent with its ability to block adhesion and chemotaxis in
vitro. In sensitized rats cetirizine, given by the i.p. route,
prevents allergen-induced eosinophil accumulation into
the pleural cavity and can resolve existing eosinophilia
when injected directly into the thorax (Pasquale et al.,
1992). Similar data have been obtained using PAF and
compound 48/80 to induce eosinophil emigration in the
same model (Martins et al., 1992). Neither of those ef-
fects seem to be related to histamine H1 receptor block-
ade. In another study, topical exposure of the airways of
ascaris-sensitized beagle dogs to cetirizine blocks pulmo-
nary eosinophilia following allergen provocation (John-
son et al., 1992). However, a proportion of that effect is
certainly attributable to the antagonism of mast cell-
derived histamine at H1 receptors since mepyramine
and terfenadine were equally active (Johnson et al.,
1992). Comparable data have been obtained in a number
of human studies (Fadel et al., 1987, 1990, 1991; Michel
et al., 1988; Charlesworth et al., 1989). In a double-
blind, placebo-controlled crossover study in pollen-sen-
sitive subjects, oral cetirizine inhibited the infiltration of
eosinophils into the superficial dermis after antigen
challenge (Michel et al., 1988). Those data were largely
supported in a subsequent investigation where cetiriz-
ine decreased eosinophil infiltration into the skin of
ragweed-sensitive subjects by almost 80% (Charles-
worth et al., 1989). However, unlike the results obtained
in beagle dogs (Johnson et al., 1992), cetirizine was not
acting as a histamine H1 receptor antagonist because it
failed to block the effect of exogenous histamine, and
another antihistamine, astemizole, was inactive. Using
a “window” technique to measure the number of resident
and invading leukocytes in the skin, oral cetirizine sig-
nificantly attenuates eosinophil migration in response to

pollen, PAF, and fMLP in allergic subjects under condi-
tions where intradermal injection of histamine is unaf-
fected (Fadel et al., 1987, 1990,). A preliminary report
also documents the ability of cetirizine to attenuate skin
reactions in normal and atopic subjects in response to
bradykinin given intradermally and by the skin-prick
technique (see Walsh, 1997b). It is noteworthy that two
studies, which evaluated the effect of cetirizine on aller-
gen-induced LPRs in atopic subjects, failed to detect any
suppression of the cellular infiltrate in response to al-
lergen [although in some subjects eosinophil numbers
were decreased (Varney et al., 1992; Taborda Barata et
al., 1996)]. However, this apparent discrepancy could be
methodological (Walsh, 1997b) since punch biopsies,
which measure the gross cell content at the reaction site,
were used to enumerate cell numbers in those investi-
gations, whereas the skin window technique, which per-
mits the enumeration of cells that have left the postcap-
illary venules in the dermis, was used in the earlier
assessments.

The biochemical basis of the histamine H1-indepen-
dent effects of cetirizine is unknown although an inter-
action at other cell surface receptors is unlikely (Snyder
and Snowman, 1987). Low concentrations (0.7–1 mg/ml)
of cetirizine increase the lipid order in the exterior part
of eosinophil membranes, decrease membrane heteroge-
neity, and block PAF-induced changes in membrane flu-
idity (Kantar et al., 1994, 1996). However, the extent to
which those physical effects contribute to the aforemen-
tioned pharmacological actions of cetirizine remain to be
established.

Several other second generation antihistamines have
been synthesized that exhibit inhibitory/anti-inflamma-
tory properties unrelated to H1 receptor blockade. These
drugs and and the functional effects they produce in
eosinophils are detailed in Table 21.

XV. Concluding Remarks

The last decade has witnessed significant advances in
our understanding of the basic pharmacology and immu-
nopharmacology of eosinophils to a level that now is
challenging discoveries made by classical parasitologists
and immunologists. Almost certainly, this is due to sig-
nificant refinements in eosinophil purification, the de-
velopment of new biochemical assays and the applica-
tion of molecular biological techniques with which to
study the regulation of cell surface receptors, G proteins,
ion channels, and second and tertiary messenger mole-
cules. Despite this new knowledge and over 100 years of
research experience that has encompassed many disci-
plines, the role of the eosinophil in health and disease
still is equivocal. It is true that support has shifted away
from the original concept that eosinophils participate in
tissue preservation and protection of the host against
invading parasites. However, although the trend in the
1990s has been to consider the eosinophil as a proinflam-
matory cell (see Table 1), proof-of-concept clinical stud-
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ies still are not possible. It is conceivable that other
aspects of eosinophil physiology and pathophysiology
will dominate research in the immediate future before
the role of this cell in allergic diseases is determined.
Indeed, the potential involvement of eosinophils in
wound healing and, more importantly, cancer immunity
(see Table 1) makes this likely. Nevertheless, it is hoped
that the advent of new technologies will shed light on
the function(s) of one of the most poorly understood
leukocytes in the near future.
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